

# Evaluation Board User Guide UG-072

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

### ADAU1401A, ADAU1401, ADAU1701, and ADAU1702 SigmaDSP Evaluation Board

### **GENERAL DESCRIPTION**

The EVAL-ADAU1401AEBZ is a platform that operates all of the ADAU1401A's functions with a full range of analog and digital inputs and outputs. Digital I/O connections are available in both S/PDIF and 3-wire serial data formats. The DSP is controlled by the SigmaStudio<sup>™</sup> software, which interfaces to the board through a USB connection. This evaluation board is powered by a single supply, which is regulated to the proper voltages on the board. The PCB is in a 6 × 6 4-layer design, with a single ground plane and a single power plane on the inner layers.

The ADAU1401A can be controlled via the USBi interface control board connected to the I<sup>2</sup>C/SPI communications interface. On-board self-boot EEPROM is included for operating the board independently of the SigmaStudio software. Push-buttons, LEDs, potentiometers, and other interface options on the included GPIO board can be connected to the evaluation board to enable GPIO control.

The EVAL-ADAU1401AEBZ can also be used for evaluation of the pin-compatible ADAU1701 and ADAU1702 SigmaDSP\*s. The differences between the ADAU1401A, ADAU1401, ADAU1701, and ADAU1702 are:

- The ADAU1701, ADAU1401A, and ADAU1401 have 1024 program RAM locations, while the ADAU1702 has 512 program RAM locations.
- The ADAU1701 has 2k words of data memory, while the ADAU1702 has 0.5k words of data memory.

- The ADAU1401A is qualified over the automotive temperature range (-40°C to +105°C), while the ADAU1701 and ADAU1702 are qualified over the consumer temperature range (0°C to 70°C).
- The ADAU1401 is an older revision of the ADAU1401A. The ADAU1401A is recommended for new designs.

### **PACKAGE CONTENTS**

EVAL-ADAU1401AEBZ evaluation board GPIO control board USBi board Universal power supply Mini-USB cable

Evaluation board/software quick-start guide, including a download link for the SigmaStudio tools

### OTHER SUPPORTING DOCUMENTATION

When using this evaluation board, refer also to the following documentation available at www.analog.com:

- ADAU1401A, ADAU1401, ADAU1701, ADAU1702 data sheets
- AN-923 Application Note, Designing a System Using the ADAU1701/ ADAU1702 in Self-Boot Mode
- AN-951 Application Note, *Using Hardware Controls with SigmaDSP GPIO Pins*
- AN-1006 Application Note, *Using the EVAL-ADUSB2EBZ*
- SigmaStudio help file (included with the software)

### **EVALUATION BOARD BLOCK DIAGRAM**



# **TABLE OF CONTENTS**

| General Description1                                   |
|--------------------------------------------------------|
| Package Contents1                                      |
| Other Supporting Documentation1                        |
| Evaluation Board Block Diagram1                        |
| Revision History2                                      |
| Quick Start Setup3                                     |
| Preparing for the First Use                            |
| SigmaStudio Software Installation                      |
| Powering up the Board                                  |
| Hardware Setup—USBi                                    |
| Connecting the Audio Cables                            |
| Switch and Jumper Settings3                            |
| Your First SigmaStudio Project—EQ and Volume Control 4 |
| Extended Setup5                                        |
| Power Supply5                                          |
| Digital Audio Inputs and Outputs5                      |
| Analog Audio Inputs and Outputs5                       |

| Master Clock Settings                   | .5 |
|-----------------------------------------|----|
| Control Interface                       | .5 |
| Switch and Jumper Functions             | .6 |
| Rotary Switch Settings                  | .6 |
| IC Functions                            | .7 |
| LED Functions                           | .7 |
| Reset                                   | .7 |
| Self-Boot                               | .7 |
| Typical Setups                          | .8 |
| All Setups                              | .8 |
| Analog Input and Analog Output          | .8 |
| S/PDIF Input and S/PDIF output          | .8 |
| Using The GPIO Board                    | .9 |
| Evaluation Board Schematics             | 10 |
| GPIO Interface Board Schematics         | 17 |
| Evaluation Board PCB Silkscreen Drawing | 19 |

### **REVISION HISTORY**

2/12—Rev. 0 to Rev. A

| Added ADAU1401A             | Universal |
|-----------------------------|-----------|
| Changed EVAL-ADAU1401EBZ to |           |
| EVAL-ADAU1401AEBZ           | Universal |

2/10—Revision 0: Initial Version

# QUICK START SETUP PREPARING FOR THE FIRST USE

To get started, use the following steps:

- 1. Install the SigmaStudio software.
- 2. Plug in the USBi.
- 3. Power up the board.
- 4. Connect the audio cables.
- 5. Set the switches and jumpers.

### SIGMASTUDIO SOFTWARE INSTALLATION

- Download the SigmaStudio.zip file from http://www.analog.com/sigmastudiodownload and extract the files to your PC. The key for the download is provided in the box with the evaluation board.
- 2. Install Microsoft\* .net Framework V 3.5. If you do not already have it installed, this can be downloaded from the Microsoft website.
- Install SigmaStudio by double-clicking setup.exe and following the prompts. A computer restart is not required.

### **POWERING UP THE BOARD**

The board is powered from the included 6 V dc power supply connected to J14. The power indicator LED, D11, should be lit.

### HARDWARE SETUP—USBi

- 1. Plug in a power supply to the power jack, J14, of the EVAL-ADAU1401AEBZ evaluation board.
- Plug the USBi into the USB port of the PC using the mini-USB cable.
- 3. Plug the USBi into the control port on the evaluation board (marked yellow in Figure 2).

- 4. Connect the USB cable to the computer and to the USBi.
- 5. When prompted for drivers, use the following options:
  - Choose Install from a list or a specific location.
  - Choose Search for the best driver in these locations.
  - Check the box for **Include this location** in the search.
  - The USBi driver is located in C:\Program Files\
     Analog Devices Inc\Sigma Studio\USB drivers, click

     Next.
  - If prompted to choose a driver, select **CyUSB.sys**.
  - In XP only, click Continue Anyway if a prompt appears indicating the software has not passed Windows Logo testing.
- Make sure that Switch S4 and Switch S5 of the EVAL-ADAU1401AEBZ are set to the I2C position.

### **CONNECTING THE AUDIO CABLES**

For this example, set up the board to have stereo analog inputs and stereo analog outputs. To do so, use the following steps:

- 1. Connect the audio source to the IN 0/IN 1 jacks on the top of the board (marked blue in Figure 2), using 3.5 mm (1/8") cables
- Connect the OUT 0/OUT 1 jacks on the top of the board (marked green in Figure 2) to your speakers or headphones.

### **SWITCH AND JUMPER SETTINGS**

To configure the board for stereo analog input and output, make sure the switches and jumpers are set as indicated in Figure 2.

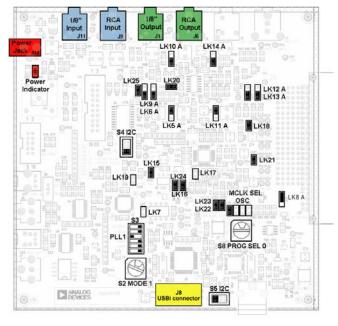



Figure 2. Evaluation Board Setup and Configuration

# YOUR FIRST SIGMASTUDIO PROJECT—EQ AND VOLUME CONTROL

The following is a procedure for building your first project in SigmaStudio and running it on the evaluation board. This procedure creates a simple design that creates a volume control and five-band EQ on a stereo input signal.

- Create a new project. SigmaStudio opens to the Hardware Configuration Tab.
- Drag a SigmaDSP IC (ADAU1401A, ADAU1701, ADAU1702, or ADAU1401), E2Prom, and a USBi cell into the blank white space. Note: If you are using a processor other than the ADAU1401A, (for example, ADAU1701 or ADAU1702), drag that processor out instead.
- Connect the USBi cell to the ADAU1401A (or other SigmaDSP) cell by clicking and dragging from the top blue output pin to the green input pin.
- 4. Connect the second **USBi** blue output pin to the green input pin on the **E2Prom** cell.

The screen should appear as it does in Figure 3.

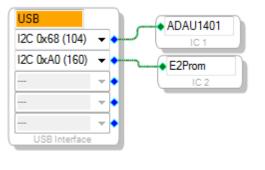
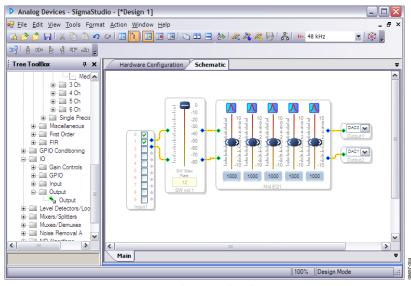




Figure 3. Hardware Configuration Tab

- 5. Click the **Schematic** tab at the top of the screen.
- 6. In the **Tree ToolBox** section, expand the **IO** > **Input**. Click and drag an **Input** cell to the work area.
- Similarly, expand Filters > Second Order > Double
   Precision > 2 Ch and click and drag Medium Size Eq to
   the work area.
- Right-click the general (second-order) cell labeled Gen Filter1.
- 9. Click **Grow Algorithm** > 1. 2 **Channel Double Precision** > 4. This creates a five-band equalizer (EQ).

  Each band's general filter settings can be modified by clicking the blue boxes on the cell.
- 10. Expand Volume Controls > Adjustable Gain > Shared Slider > Clickless SW Slew and click and drag Single slew
- 11. Expand the IO > Output. Click and drag two Output cells
- 12. For each of the outputs, select a DAC output by clicking the pull-down box. **DAC0** and **DAC1** are left and right outputs, 0 and 1, from the ADAU1401A (output on J1 as marked in green in Figure 2), respectively. **DAC2** and **DAC3** are left and right channel, respectively for the second stereo line output (J3 on the board).
- 13. Connect all the cells as depicted in Figure 4.
- 14. Make sure the board is powered and connected to the PC. Click the **Link-Compile-Download** button in the SigmaStudio toolbar, or select **Link-Compile-Download** from the **Action** menu.
- If the project compiled without error, you will be in Ready-Download mode.
  - Your screen should now appear as it does in Figure 4.
- 16. Play your audio source; audio should now be available. Move the volume control and filter sliders and hear the effect on the output audio in real time.



38697-003

Figure 4. Schematic Tab, Full Design

### **EXTENDED SETUP**

### **POWER SUPPLY**

The evaluation board is powered by a single supply through Connector J14. The voltage on J14 should be 6 V dc to 9 V dc with the ability to source at least 200 mA. The tip of the power supply connector should be the positive voltage. This single supply is regulated to 3.3 V for both the analog and digital planes. The ADAU1401A generates 1.8 V from the 3.3 V supply using its integrated regulator.

### **DIGITAL AUDIO INPUTS AND OUTPUTS**

Digital signals can be connected to the board in two different formats. The evaluation board can input or output a standard 2-channel S/PDIF stream. These I/Os can be either electrical (J5 and J4) or optical (U13 and U29). The S/PDIF I/O streams are connected to the SDATA\_IN0 and SDATA\_OUT0 serial data ports and are active according to specific switch settings on S2. The copy protection bit on the S/PDIF transmitter is set; therefore, audio devices, such as digital recorders, may ignore the data output from the evaluation board.

PCM digital audio data can also be interfaced to the ADAU1401A. This data is connected to the ADAU1401A through the GPIO interface board that is connected to J12. Input Header J3 and Output Header J2 can connect to external ADCs, DACs, and codecs with an I²S, left-justified, right-justified, or TDM data stream. Master clock, left/right clock, and bit clock connections are also on these headers.

Up to four stereo audio signals can be input or output on each of these headers. These signals, when selected by the rotary mode switches, interface directly to the serial data ports of the ADAU1401A. These headers also serve as the I/Os for the multi-channel TDM streams.

### **ANALOG AUDIO INPUTS AND OUTPUTS**

The evaluation board can input two analog audio signals and can output four signals using the converters of the ADAU1401A. The full-scale input voltage is  $2.0~\rm V$  rms and the full-scale output voltage is  $0.9~\rm V$  rms.

Mini-jack J11 is the input to the ADCs. Mini-jack J1 and Mini-jack J3 are the DAC output connectors. The output is low-pass filtered with either an active anti-image filter using a U3 op amp or a passive RC filter. The active filters' –3 dB cutoff frequency is 100 kHz and has an approximate third-order Bessel (linear phase) response.

### **MASTER CLOCK SETTINGS**

The master clock connection of the ADAU1401A is set with Jumper LK1 to Jumper LK4. These allow the user to select as a source either the on-board oscillator connected to an external crystal (OSC), the S/PDIF receiver's master clock output (DIR), an external clock from J12 (EXT), or a dedicated clock connection on a BNC connector, J13 (BNC). If any setting other than OSC is chosen, then disconnect Jumper LK16, which couples the oscillator circuit of the ADAU1401A to the crystal. If this jumper is not removed, there could be two clocks on the PCB running at very close frequencies. These clocks could easily cause serious performance degradation on the converters of the ADAU1401A.

### **CONTROL INTERFACE**

J16 is the connection for the USBi. The USBi is used to send I<sup>2</sup>C and SPI control data to the ADAU1401A on the evaluation board. This provides a real-time programming and tuning connection to SigmaStudio.

Note that the evaluation board also includes footprints for an obsolete USB interface using Connector J16. This section of the board has been replaced by the USBi's functionality.

### **SWITCH AND JUMPER FUNCTIONS**

This evaluation board has many switches and jumpers; however, for most applications, many of these need to be set only once and can be ignored after that. Table 1 shows the function of each jumper and switch on the evaluation board. For the S3 switch package, logic high (1) is left and logic low (0) is right, assuming analog connectors are the top of the board.

Table 1. Switches and Jumpers

| Reference   | enes una jumpers                                                                                                              |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Designator  | Function                                                                                                                      |  |  |  |
| S1          | Resets evaluation board.                                                                                                      |  |  |  |
| S2          | Signal routing mode select.                                                                                                   |  |  |  |
| S3-1        | Sets SELFBOOT.                                                                                                                |  |  |  |
| S3-2        | Sets PLL MODE0.                                                                                                               |  |  |  |
| S3-3        | Sets PLL MODE1.                                                                                                               |  |  |  |
| S3-4        | Sets ADDR0.                                                                                                                   |  |  |  |
| S3-5        | Sets ADDR1.                                                                                                                   |  |  |  |
| S3-6        | Reserved—set low.                                                                                                             |  |  |  |
| S4          | Sets I <sup>2</sup> C or SPI connection to the ADAU1401A.                                                                     |  |  |  |
| S5          | USBi control connector—I <sup>2</sup> C (left) or SPI (right).                                                                |  |  |  |
| S6          | Selects between RCA and optical S/PDIF input.                                                                                 |  |  |  |
| S7          | Unused.                                                                                                                       |  |  |  |
| S8          | Unused.                                                                                                                       |  |  |  |
| LK1 to LK4  | Selects which master clock signal is sent to the PLL of the ADAU1401A.                                                        |  |  |  |
| LK5 to LK6, | Connects the DAC outputs to active (A) or passive                                                                             |  |  |  |
| LK9 to LK14 | (B) filters.                                                                                                                  |  |  |  |
| LK7         | Sets the EEPROM write protect pin.                                                                                            |  |  |  |
| LK8         | Selects 3.3 V or 5 V power connected to GPIO control board.                                                                   |  |  |  |
| LK15        | Connects the 1.8 V output of the regulator                                                                                    |  |  |  |
|             | transistor to DVDD of the ADAU1401A.                                                                                          |  |  |  |
| LK16        | Connects/disconnects 12.288 MHz crystal from oscillator circuit of the ADAU1401A.                                             |  |  |  |
| LK17        | Connects/disconnects MCLK output to external circuits. Connecting this may degrade the analog audio performance of the board. |  |  |  |
| LK18        | Connects 3.3 V to AVDD of the ADAU1401A.                                                                                      |  |  |  |
| LK19        | Writeback trigger input.                                                                                                      |  |  |  |
| LK20        | Connects 3.3 V to the AD8608 op amp.                                                                                          |  |  |  |
| LK21        | Connects 3.3 V to the IOVDD of the ADAU1401A.                                                                                 |  |  |  |
| LK25        | Connects 3.3 V power to serial data buffer.                                                                                   |  |  |  |

### **ROTARY SWITCH SETTINGS**

S2 is a hex rotary switch that controls the input and output signal routing on the evaluation board. The position of this switch controls which serial data signals and clocks will be routed to and from the ADAU1401A. Table 3 shows the settings of Rotary Switch S2. This switch controls the routing of digital signals to and from the ADAU1701/ADAU1702 (U1) serial input and output ports. Table 3 indicates which serial data signals and clocks are sent to each of the four serial data inputs, as well as to where the output signals of the serial port are routed. An x in the table indicates that no signal is sent to that input pin on the ADAU1701/ ADAU1702 in that mode. Switch Position 4 to Switch Position F are unused.

The functions in Table 2 are available for each of the modes in Table 3.

Table 2. S2 Settings

| Mode | Function                                                                      |
|------|-------------------------------------------------------------------------------|
| 0    | Inputs: S/PDIF, analog<br>Outputs: S/PDIF, analog, serial data (slave)        |
| 1    | Inputs: analog, serial data<br>Outputs: analog, serial data (master or slave) |
| 2    | Inputs: analog, serial data<br>Outputs: S/PDIF, analog, serial data (master)  |
| 3    | Inputs: S/PDIF, analog<br>Outputs: analog                                     |

The multipurpose pins of the ADAU1401A must be set into serial data I/O modes to use the board's digital I/O.

Table 3. S2 Settings<sup>1</sup>

| 14010 01 02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                  |                                         |                                           |            |                              |
|-------------------------------------------|------------------|-----------------------------------------|-------------------------------------------|------------|------------------------------|
| SW2 Position                              | SDATA_IN0        | SDATA_IN1 to<br>SDATA_IN3               | SDATA_OUT0 to<br>SDATA_OUT3               | SPDIF Tx   | Clock Master                 |
| 0                                         | S/PDIF Rx        | х                                       | External Output 0 to<br>External Output 3 | SDATA_OUT0 | S/PDIF Rx                    |
| 1                                         | х                | х                                       | х                                         | х          | ADAU1401A crystal oscillator |
| 2                                         | External Input 0 | External Input 1 to<br>External Input 3 | External Output 0 to<br>External Output 3 | SDATA_OUT0 | ADAU1401A output             |
| 3                                         | S/PDIF Rx        | х                                       | х                                         | х          | S/PDIF Rx                    |
| 4 to F                                    | х                | х                                       | х                                         | х          | x                            |

 $<sup>^{1}</sup>$  x = no signal is sent to the input pin.

### IC FUNCTIONS

Table 4 explains the function of each IC on the evaluation board. The Lattice CPLD (U2) is only used for routing signals on the board and performs no decoding or signal conditioning.

**Table 4. IC Functions** 

| Reference  |                                                      |
|------------|------------------------------------------------------|
| Designator | Function                                             |
| U1         | ADAU1401A SigmaDSP audio processor                   |
| U2         | Lattice M4A3-64/32 CPLD for signal routing           |
| U3         | AD8608 quad op amp for analog audio output buffering |
| U4         | CS8416 S/PDIF receiver                               |
| U5         | 74LVC541 for buffering serial output signals         |
| U6         | CS8406 S/PDIF transmitter                            |
| U8         | ADP3336-3 regulator—3.3 V analog supply              |
| U10        | ADM811RART reset generator                           |
| U11        | Unused                                               |
| U12        | 74LVC1G240 inverter                                  |
| U14        | Self-boot EEPROM: 32 kB × 8 (256 kB)                 |
| U18        | Unused                                               |
| U19        | Unused                                               |
| U20        | Unused                                               |

### **LED FUNCTIONS**

D11 indicates that the 3.3 V supply is present through an external supply.

### **RESET**

The evaluation board can be reset with a push-button switch, S1. This active-low reset signal is debounced by the ADM811 (U10). This reset signal affects the ADAU1401A and S/PDIF receiver and transmitter. The board may also be reset by disconnecting the power. After reset, the ADAU1401A does not pass audio, and a control port write has to be performed so that signals are output again.

### **SELF-BOOT**

The self-boot function of the ADAU1401A can be set up on the evaluation board. This allows the ADAU1401A to boot itself from EEPROM U14 when it is brought out of reset. The ADAU1401A is the master on the  $\rm I^2C$  bus during the self-boot operation; however, another bus master device may take control afterwards.

The first step in setting up self-boot mode is to load a program from SigmaStudio into the EEPROM. This is done by using the **Load latest compilation to EEPROM** function found by right-clicking on the IC in the **Hardware Configuration** window. This should be done while the S3-1 self-boot switch is set low (right). Note that the jumper should not be on LK7 for this operation because the EEPROM cannot be write-protected. After the program is saved, Switch S3-1 can be set high (left), which sets the ADAU1401A into self-boot mode the next time it is powered on or reset.

# TYPICAL SETUPS ALL SETUPS

The switch and jumper settings in Table 5 are common for all typical setups described in this user guide.

Table 5. Standard Switch and Jumper Settings

| Component                   | Setting                                           |
|-----------------------------|---------------------------------------------------|
| LK15, LK18,<br>LK20 to LK25 | Jumper on                                         |
| LK7, LK19                   | Jumper off                                        |
| S3-4                        | 0 (right)                                         |
| S3-5                        | 0 (right)                                         |
| S4                          | Down (for default I <sup>2</sup> C communication) |
| S5                          | Left (for default I <sup>2</sup> C communication) |

### **ANALOG INPUT AND ANALOG OUTPUT**

Input comes from the stereo analog inputs to Pin ADC0 and Pin ADC1 of the ADAU1401A and outputs on the DACs. Default outputs for the ADC inputs are DAC outputs, VOUT2 and VOUT3.

In this setup, the master clock is generated by the ADAU1401A's oscillator connected to a 12.288 MHz crystal. Table 6 explains how the switches and jumpers need to be set up for this mode. Any component setting not mentioned in Table 6 or in Table 5 can be considered don't care.

The settings in Table 5 and Table 6 are also appropriate for using the serial data I/Os.

Table 6. Evaluation Board Settings for Analog I/O

| Component   | Setting                                          |
|-------------|--------------------------------------------------|
| S2          | Position 1                                       |
| S3-2        | 0 (right)                                        |
| S3-3        | 1 (left)                                         |
| LK1         | Connected                                        |
| LK2 to LK4  | Disconnected                                     |
| LK5 to LK6, | A for active filter, and B for passive filter on |
| LK9 to LK14 | DAC outputs                                      |
| LK16        | Connected                                        |
| LK17        | Disconnected                                     |

### S/PDIF INPUT AND S/PDIF OUTPUT

Input comes from the stereo S/PDIF receiver to SDATA\_IN0 (Pin 10) of the ADAU1401A and outputs on whichever outputs (SDATA\_OUTx) are designated in the SigmaStudio software. The default output for the input is SDATA\_OUT0 (Pin 15).

In this setup, the master clock and serial data clocks are generated by the CS8416. Table 7 explains how the switches and jumpers need to be set up for this mode. Any component setting not mentioned in Table 7 can be considered don't care.

Table 7. Evaluation Board Settings for S/PDIF Input, Analog and S/PDIF Output

| unu 0,1 2 11 0 utp ut |                                                  |  |  |
|-----------------------|--------------------------------------------------|--|--|
| Component             | Setting                                          |  |  |
| S2                    | Position 0                                       |  |  |
| S3-2                  | 0 (right)                                        |  |  |
| S3-3                  | 1 (left)                                         |  |  |
| LK1, LK3 to LK4       | Disconnected                                     |  |  |
| LK2                   | Connected                                        |  |  |
| LK5 to LK6,           | A for active filter, and B for passive filter on |  |  |
| LK9 to LK14           | DAC outputs                                      |  |  |
| LK16                  | Disconnected                                     |  |  |
| LK17                  | Connected                                        |  |  |

### **USING THE GPIO BOARD**

The GPIO board is provided with the EVAL-ADAU1401AEBZ to connect control and data interfaces to the multipurpose pins of the ADAU1401A. These controls are broken out on a separate board from the main evaluation board so that different configurations beyond what is supplied can be easily connected. The functions on this board include potentiometers, LEDs, push buttons, switches, and a rotary encoder.

Table 8 shows how the jumpers should be set to properly route the controls to the ADAU1401A's MPx pins. The settings in

Table 8 assume that the board is oriented with a 50-pin connector, J1, on the left of the board.

The 12 jumpers, J3 to J14, should be left on the pins to connect the MPx pins to the control interfaces. These jumpers should be removed if the GPIO board is being used to interface serial audio data to the ADAU1401A through Header J2 and Header J3. JP1 and JP2 are used to route the serial data ports' master clock signals.

The GPIO board uses a Hirose PCN10C-50S-2.54DS connector to interface to the ADAU1401A evaluation board. Using this connector and the pinout in Figure 10, any set of controls can be connected to the multipurpose pins of the ADAU1401A. The GPIO board is powered through Pin 1 of J12 on the evaluation board. The voltage supplied to the GPIO board is set with LK8—3.3 V in Position A or 5.0 V in Position B.

Table 8. GPIO Board Jumper Settings and Functions

| ADAU1401A <b>Pin</b> | Jumper | Control Routed to MPx Pin | Jumper Setting | Notes                                    |
|----------------------|--------|---------------------------|----------------|------------------------------------------|
| MP0                  | JP9    | LED D20                   | Left           |                                          |
|                      |        | Push Button S10           | Right          | Use debounce, signal low on button press |
| MP1                  | JP10   | LED D21                   | Left           |                                          |
|                      |        | Push Button S11           | Right          | Use debounce, signal low on button press |
| MP2                  | JP11   | Rotary encoder            | Left           | Must be set to input GPIO, no debounce   |
|                      |        | Potentiometer R28         | Right          | Read ADC value from Register 0x080A      |
| MP3                  | JP12   | Rotary encoder            | Left           | Must be set to input GPIO, no debounce   |
|                      |        | Potentiometer R30         | Right          | Read ADC value from Register 0x080B      |
| MP4                  | JP13   | Switch S12                | Left           |                                          |
|                      |        | Push Button S13           | Right          | Use debounce, signal low on button press |
| MP5                  | JP14   | Switch S14                | Left           |                                          |
|                      |        | Push Button S14           | Right          | Use debounce, signal low on button press |
| MP6                  | JP8    | Push Button S7            | Left           | Use debounce, signal low on button press |
|                      |        | Switch S8                 | Right          |                                          |
| MP7                  | JP7    | Push Button S5            | Left           | Use debounce, signal low on button press |
|                      |        | Switch S6                 | Right          |                                          |
| MP8                  | JP6    | Potentiometer R4          | Left           | Read ADC value from Register 0x080C      |
|                      |        | LED D2                    | Right          |                                          |
| MP9                  | JP5    | Potentiometer R3          | Left           | Read ADC value from Register 0x0809      |
|                      |        | LED D1                    | Right          |                                          |
| MP10                 | JP4    | Push-button S3            | Left           | Use debounce, signal low on button press |
|                      |        | Switch S4                 | Right          |                                          |
| MP11                 | JP3    | Push Button S1            | Left           | Use debounce, signal low on button press |
|                      |        | Switch S2                 | Right          |                                          |

# **EVALUATION BOARD SCHEMATICS**

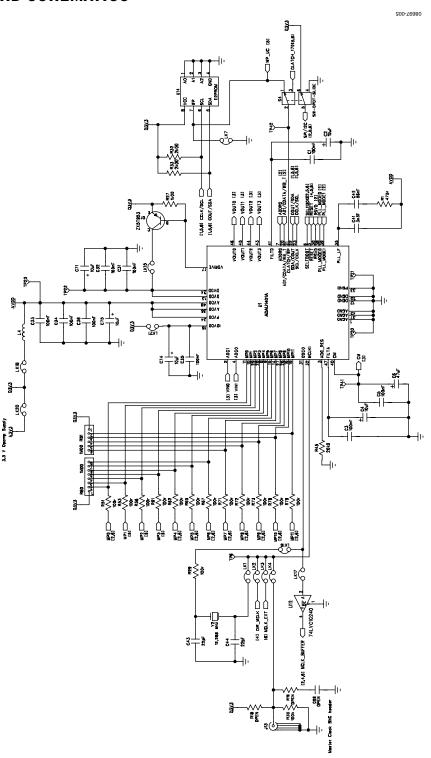
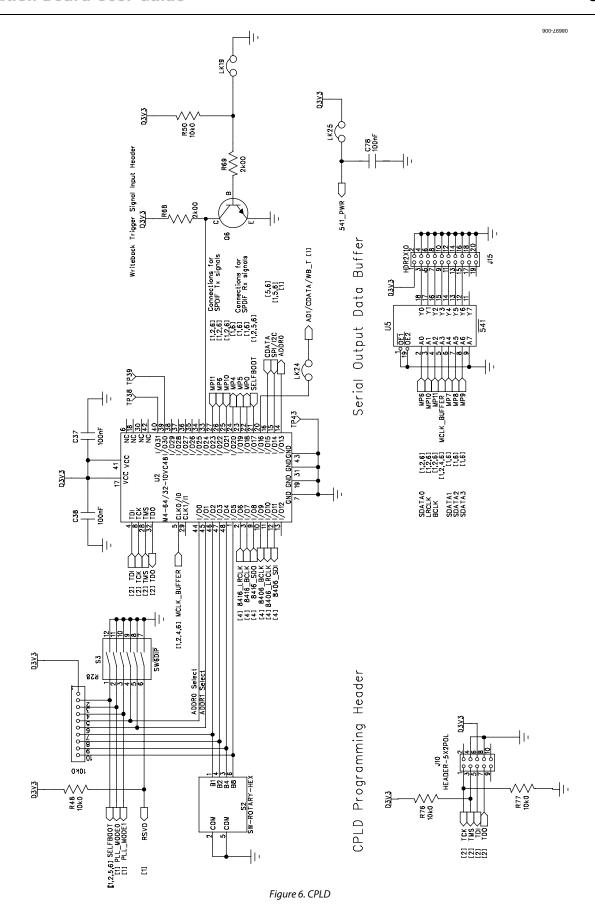




Figure 5. ADAU1401A Evaluation Board Schematic



Rev. A | Page 11 of 20

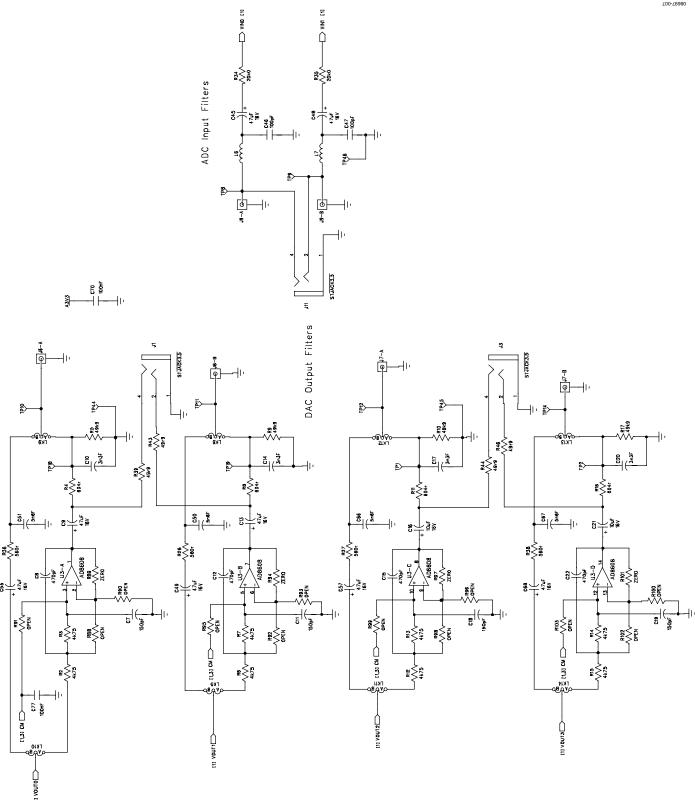



Figure 7. Analog Input and Output Filters

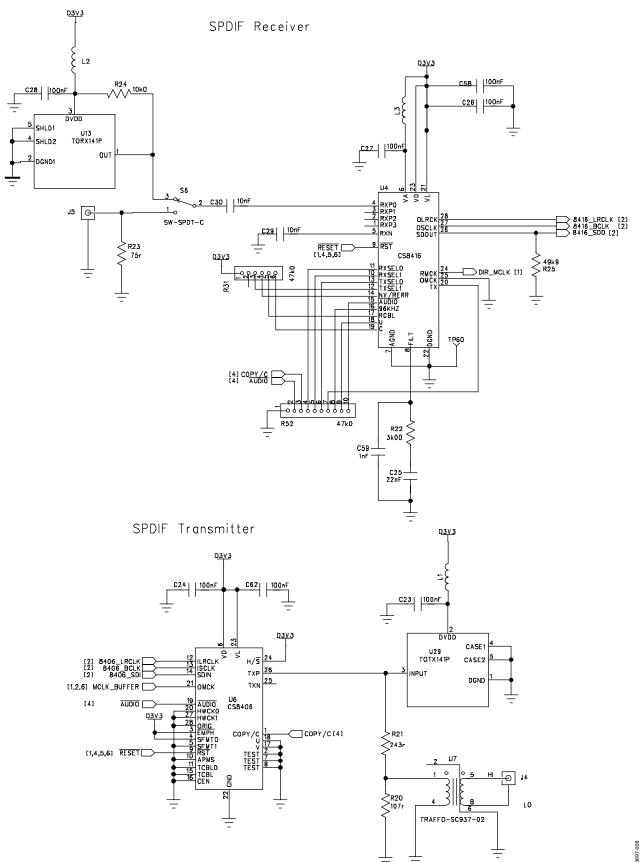



Figure 8. S/PDIF Receiver and Transmitter

# Reset Generator USBi Heade r 15.61 CLATCH\_1701 15.61 CLATCH\_1701 17.5.61 CDATA [2,5,6] 17.5.61 COUT/SDA 17.5.61 COUT/SDA

Figure 9. Reset Generator and USBi

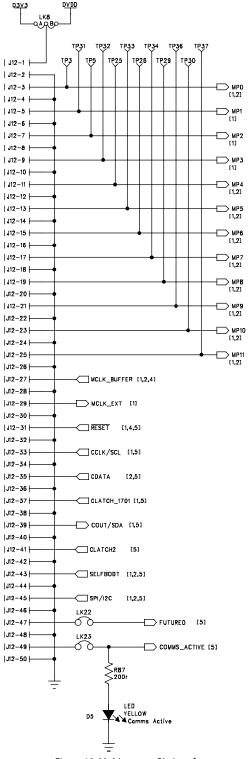



Figure 10. Multipurpose Pin Interface

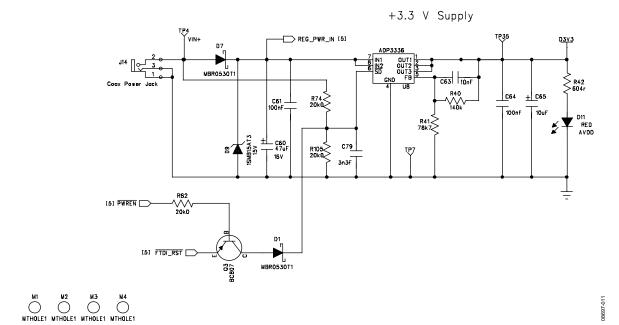
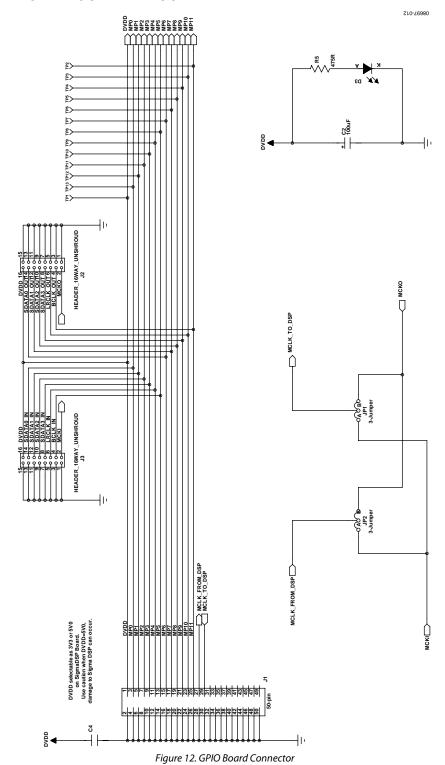




Figure 11. Power Supply

# **GPIO INTERFACE BOARD SCHEMATICS**



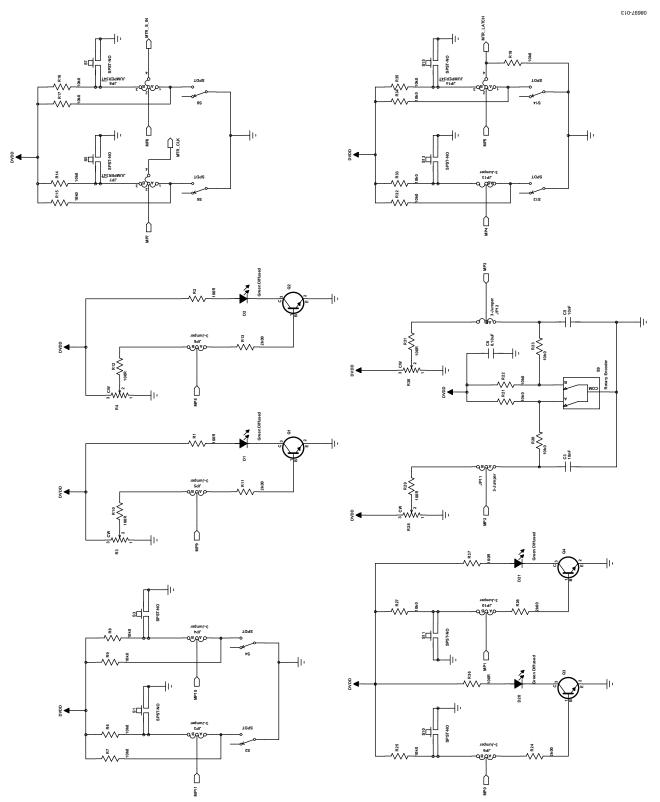



Figure 13. GPIO Board Controls

## **EVALUATION BOARD PCB SILKSCREEN DRAWING**

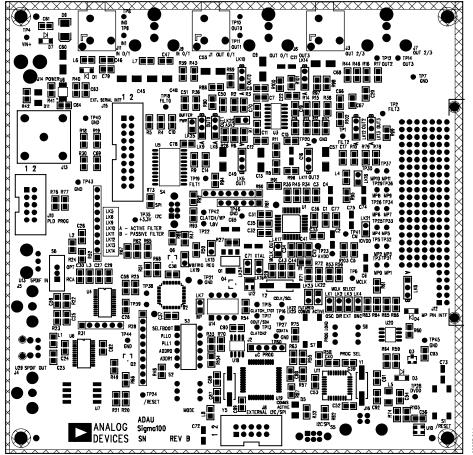



Figure 14. Top Layer Silkscreen

**UG-072** 

**Evaluation Board User Guide** 

### **NOTES**



### **ESD Caution**

**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

### Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2010–2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. UG08697-0-3/12(A)



www.analog.com