sparkfun

TART SOMETHING

CCS811/BME280 (Qwiic) Environmental
Combo Breakout Hookup Guide

Introduction

The CCS811/BME280 (Qwiic) Environmental Combo Breakout work
together to take care of all of your atmospheric quality sensing needs with
the CCS811 and BME280 ICs. The CCS811 is an exceedingly popular
sensor, providing readings for equivalent CO, (or eCO,) in the parts per
million (PPM) and total volatile organic compounds in the parts per billion
(PPB). The CCS811 also has a feature that allows it to fine tune its
readings if it has access to the current humidity and temperature. Luckily for
us, the BME280 provides humidity, temperature, and barometric pressure!
This allows the sensors to work together to give us more accurate readings
than they’d be able to provide on their own. We also made it easy to
interface with them via I2C.

SparkFun Environmental Combo Breakout -

CCS811/BME280 (Qwiiic)
@© SEN-14348

Required Materials

To get started, you'll need a microcontroller or single board computer to
control everything.

SparkFun ESP32 Thing SparkFun RedBoard -
@® DEV-13907 Programmed with Arduino
@ DEV-13975

\r

Raspberry Pi 3 Particle Photon (No Headers)
@© DEV-13825 @ WRL-13764

Now to get into the Qwiic ecosystem, the key will be one of the following
Quwiic shields to match your preference of microcontroller or single board
computer:

| Y.
1 = o il o) ‘l .
Qwiic Shield for Arduino Quwiic Shield for Raspberry Pi

© sPX-14286 © SPX-14292

Qwiic Shield for ESP32 Qwiic Shield for Photon
O sPx-14203 @ SPX-14202

You will also need a Qwiic cable to connect the shield to your
CCS811/BME280, choose a length that suits your needs.

Page 2 of 17

Qwiic Cable - 50mm Qwiic Cable - 200mm
@ SPX-14206 @ sPX-14204
Retired Retired

-,

N\

\

Qwiic Cable - 100mm
@ sPx-14205
Retired

Suggested Reading

If you aren’t familiar with our new Qwiic system, we recommend reading
here for an overview. We would also recommend taking a look at the
following tutorials if you aren’t familiar with them.

12C

An introduction to 12C, one of the
main embedded communications
protocols in use today.

If the concepts of pressure are weighing on you, check out these links.

« (external) Air Pressure Altitude Calculator — Play around to get a feel
for what the pressures are at different altitudes.

* Wikipedia: Atmospheric_pressure — Has a nice equation for
conversion of pressure and altitude (referenced for library code).

» MPL3115A2 Pressure Sensor Hookup Guide: Pressure vs Altimeter
Setting — Confused why the reading pressure doesn’t match the

reported pressure from your local weather station? Read this section.

Hardware Overview

Power & Features

Together the sensors can consume 13 mA of current. It takes 12 mA to
power the CCS811 while 1 mA to power the BME280.

Page 3 of 17

Characteristic Range

Operating 3.3V: Regulated to 1.8V - 3.6V

Voltage

tvoC 0-1187 PPB

eCO, 400 - 8192 PPM

Temperature -40°C - 85°C

Humidity 0-100% RH, +3% from 20 - 80%

Pressure 30 - 110 kPa, relative accuracy of 12 Pa, absolute

accuracy of 100 Pa

Altitude 0 - 30,000ft (9.2km), relative accuracy of 3.3ft (1M) at
sea level, 6.6ft (2M) at 30,000ft.

Communication via I12C

The CCS811+BME280 communicates exclusively via I2C, utilizing our
handy Qwiic system. The Qwiic System utilizes the 4-pin polarized Qwiic
connectors highlighted below.

I Environmental Combo I :
® ccseii / BME280

~C e n

The I2C address can also be changed using the jumpers on the back of the
board if you are using another device with the same I2C address. ADR1 can
be used to change the I2C address of the CCS811 from 0x5B to 0x5A by
adding solder to close the jumper. The ADR2 jumper can be used to
change the I?C address of the BME280 from 0x77 to 0x76. The I2C bus has
pull-up resistors enabled by default. If not desired, these can be removed
by separating the “I2C PU” triple jumper on the bottom side with a hobby
knife. The locations of these jumpers are shown in the picture below.

Environmental Combo
BRNEZ28B® / CCS811

Pins

Page 4 of 17

Page 5 of 17

Below is a list of pins made available for the CCS811 and BME280
environmental combo breakout.

Pin Description Direction
RST Reset (active low, CCS811) In

INT Interrupt (active low, CCS811) Out
WAK Wake (active low, CCS811) In

SCL Clock In

SDA Data In

3.3V Power In

GND Ground In

Optional Control Lines for the CCS811

Additionally, the three control lines RST, INT, and WAK can be used to
further the degree of control over the CCS811.

+ RST — Pull this line low to reset the IC.

« INT — After configuring the sensor to emit interrupt requests, read
this line to determine the state of the interrupt.

« WAK — Pull this line high to put the sensor to sleep. This can be
used to save power but is not necessary if power is not an issue.

Hardware Assembly

If you haven’t yet assembled your Qwiic Shield, now would be the time
solder the headers to the shield. Now with the shield assembled, Sparkfun’s
new Qwiic environment means that connecting the sensor could not be
easier. Just plug one end of the Qwiic cable into the CCS811+BME280
breakout (either 12C connector will do) and the other into the Qwiic Shield.
You'll be ready to upload a sketch and start taking air quality
measurements once connected. It seems too easy, but thats why we made
it this way! We show the SparkX version of the Qwiic shield below, but don’t
worry we will be releasing a full-fledged, mass-produced SparkFun Qwiic
Shield shortly.

Library Overview
First, you'll need to download and install the CCS811 and BME280 Arduino
Libraries.

https://github.com/sparkfun/SparkFun_BME280_Arduino_Library/archive/
DOWNLOAD THE SPARKFUN BME280 LIBRARY master.zip

https://github.com/sparkfun/SparkFun_CCS811_Arduino_Library/archive/master.zip
DOWNLOAD THE SPARKFUN CCS811 LIBRARY

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text
https://github.com/sparkfun/SparkFun_BME280_Arduino_Library/archive/master.zip

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text
https://github.com/sparkfun/SparkFun_CCS811_Arduino_Library/archive/master.zip

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

Note: This example assumes you are using the latest version of the
Arduino IDE on your desktop. If this is your first time using Arduino,
please review our tutorial on installing the Arduino IDE. If you have not
previously installed an Arduino library, please check out our
installation guide.

Before we get started on a sketch, lets take a look at the libraries used.

BME280 Library

Construction

In the global scope, construct your sensor object (such as mySensor or
pressureSensorA) without arguments.

Example:
BME280 mySensor;
Object Parameters and setup()

Rather that passing a bunch of data to the constructor, configuration is
accomplished by setting the values of the BME280 type in the setup()
function. They are exposed by being public: so use the
myName.aVariable = someValue; syntax.

Settable variables of the class BME280:

//Main Interface and mode settings
uint8_t commInterface;

uint8_t I2CAddress;

uint8 t chipSelectPin;

uint8_t runMode;

uint8_t tStandby;
uint8_t filter;

uint8_t tempOverSample;
uint8 t pressOverSample;
uint8_ t humidOverSample;

An example configuration of the BME280 type in setup() :

Page 6 of 17

#include <stdint.h>
#include "SparkFunBME280.h"

#include "Wire.h"
#include "SPI.h"

//Global sensor object
BME280 mySensor;

void setup()

{

vely

vely

vely

[/*F¥Driver settings* ikttt dokkhokk ok / /

//commInterface can be I2C_MODE
//specify I2C address. Can be 0x77(default) or ox76

//For I2C, enable the following
mySensor.settings.commInterface = I2C_MODE;
mySensor.settings.I2CAddress = 0x77;

//***%0peration settingsiksikstikskiksk ks bhk sk ok / /

//runMode can be:

// 0@, Sleep mode

// 1 or 2, Forced mode

// 3, Normal mode

mySensor.settings.runMode = 3; //Forced mode

//tStandby can be:

// ©, 0.5ms
// 1, 62.5ms
// 2, 125ms
// 3, 250ms
// 4, 50ems
// 5, 1eeems
// 6, 1@ms
// 7, 20ms

mySensor.settings.tStandby = 0;

//filter can be off or number of FIR coefficients to use:
// 0, filter off

// 1, coefficients = 2

// 2, coefficients = 4

// 3, coefficients = 8

// 4, coefficients = 16

mySensor.settings.filter = 0;

//tempOverSample can be:
// ©, skipped
// 1 through 5, oversampling *1, *2, *4, *8, *16 respecti

mySensor.settings.tempOverSample = 1;

//pressOverSample can be:

// ©, skipped

// 1 through 5, oversampling *1, *2, *4, *8, *16 respecti
mySensor.settings.pressOverSample = 1;

//humidOverSample can be:

// ©, skipped

// 1 through 5, oversampling *1, *2, *4, *8, *16 respecti

mySensor.settings.humidOverSample = 1;
delay(10); //Make sure sensor had enough time to turn o

Page 7 of 17

Page 8 of 17

n. BME280 requires 2ms to start up. Serial.begin(5760
0);

Serial.print("Starting BME28@... result of .begin(): ox");
//Calling .begin() causes the settings to be loaded
Serial.println(mySensor.begin(), HEX);

uint8_t begin(void) — In the above example, begin is used to
start the sensor. The basic routine it follows is like this:

o Starts up the wiring library if necessary, though
#include "Wire.h" may be needed in your sketch.
> Concatenates the calibration words as specified by Bosch.
o Applies user settings to the configuration registers in the
BME280.
o Returns the ID register (should read 0x60).
To use it, call mySensor.begin(); or assign the output to something
like uint8_t myReturnedvalue = mySensor.begin();

.begin() Needs to be run once during the setup, or after any
settings have been modified. In order to let the sensor’s
configuration take place, the BME280 requires a minimum time
of about 2 ms in the sketch before you take data.

* void reset(void) — Send the reset word to the BME280.
Afterwards, you'll have to run begin() again.

e float readTempC(void) — Use to get the temperature in Celsius,
as a float.

e float readTempF(void) — Use to get the temperature in
Fahrenheit, as a float. Takes no arguments.

* float readFloatPressure(void) — Use to get pressure in units
of kiloPascals, as a float.

* float readFloatAltitudeMeters(void) — Use to get altitude in
units of meters, as a float.

* float readFloatAltitudeFeet(void) — Use to get altitude in
units of feet, as a float. This function calculates based off the
measured pressure.

* float readFloatHumidity(void) — Use to get humidity in %
relative, as a float.

CCS811 Library

The library is fairly normal to use compared with our other sensors. You'll
have to include the library, create a sensor object in the global space, and
then use functions of that object to begin and control the sensor. With this
one, you must pass the 12C address to the object during construction.

CCS811 Burn-in Time: Please be aware that the CCS811 datasheet
recommends a burn-in of 48 hours and a run-in of 20 minutes (i.e. you
must allow 20 minutes for the sensor to warm up and output valid
data).

To include the library and to take care of all the gritty compiler stuff, place
the following at the beginning of the sketch before void setup() function.

#include <SparkFunCCS811.h>

#define CCS811_ADDR Ox5B //Default I2C Address
//#define CCS811_ADDR Ox5A //Alternate I2C Address

CCS811 myCCS811(CCS811_ADDR);

Now functions of the object named myccssi1 can be called to set up and
get data, while all the I2C stuff is kept under the hood.

To get the sensor ready during program boot, myCcCcs811.begin() must be
called. Here’s an example of the minimal usage of begin.

void setup()

{
myCCS811.begin();

Error Status: The .begin() function has a special feature: it returns the
status of the function call! If there was a problem during begin, it will
return a non-zero code indicating what happened. It's optional, and is
described in the "Custom Types and Literals" section below.

Then in the main loop() of the program, calls to the sensor functions such
as mySensor.readAlgorithmResults() are needed to read the sensor. The
following snippet shows a simple check for data by calling the sensor to
calculate values, output data, and save the data in variables. However, it
doesn’t do anything with the data! Check out the examples for fully
functional code to make use of the sensor data.

void loop()

{
if (myCCS811.dataAvailable())

{
myCCS811.readAlgorithmResults();

int tempCO2 = myCCS811.getC02();
int tempVOC = myCCS811.gettVOC();

¥
else if (myCCS811.checkForStatusError())

{
while(1);

}

delay(1000); //Wait for next reading
}

Function Reference

The following functions exist for the ccs811 object. Functions with scoped
return type CCS811Core::status report an error state as defined in the
literals section below. It is optional and can be used to determine success
or failure of call.

e (CS811Core::status begin(void) — This starts wire, checks
the ID register, checks for valid app data, starts the app, and
establishes a drive mode.

e (CS811Core::status readAlgorithmResults(void) — Call to
cause the sensor to read its hardware and calculate TVOC and eCO,
levels.

* bool checkForStatusError(void) — Returns true if there is an

Page 9 of 17

Page 10 of 17

error pending. This checks the status register.

bool dataAvailable(void) — Returns true if a new sample is
ready and hasn’t been read.

bool appValid(void) — Returns true if there is a valid
application within the internal CCS811 memory.

uint8_t getErrorRegister(void) — Returns the state of the
ERROR_ID register.

uintl6_t getBaseline(void) — Returns the baseline value.

CCS811Core::status setBaseline(uintlé_t) — Apply a saved
baseline to the CCS811.

CCS811Core::status enableInterrupts(void) — Enables the
interrupt pin for data ready.

CCS811Core::status disableInterrupts(void) — Disables the
interrupt pin.

CCS811Core: :status setDriveMode(uint8_t mode) — Sets the
drive mode where mode can be 0 through 4:

o 0: Measurement off

o 1: Measurement every 1 second

o 2: Measurement every 10 seconds

o 3: Measurement every 60 seconds

o 4: Measurement every 0.25 seconds — for use with external
algorithms

e (CCS8l11Core::status setEnvironmentalData(float relativeHumidity, float temperature)
— Sets the environmental conditions for compensation.
o relativeHumidity in units of %, 0.00 through 100.0
o temperature in degrees C, -25.0 through 50.0

* void setRefResistance(float) — If you've changed the
thermistor pull-up, call this to give the sensor the new resistor value.
Otherwise, it will be 10000.

* uintl6_t getTvoC(void) — Collect the last calculated TVOC
value, in parts per billion (ppb).

e uintl6_t getC02(void) — Collect the last calculated eCO, value,
in parts per million (ppm).
e float getResistance(void) — Collect the last calculated

resistance value of the NTC terminals.

¢ float getTemperature(void) — Collect the last calculated
temperature.

Custom Types and Literals

The CCS811 library defines a special data type to deal with error states of
functions. In most places, the library can be used without paying attention
to the function return types, but here are the values the data type status
can hold if they are needed:

Page 11 of 17

// Return values

typedef enum

{
SENSOR_SUCCESS,
SENSOR_ID_ERROR,
SENSOR_I2C_ERROR,
SENSOR_INTERNAL_ERROR
/]

} status;

To avoid the possibility of multiple libraries using the same status name,
the enum is actually inside the scope of the CCS811 object, buried in the
CCS811Core, which is the base class. Phew, don’t worry about that too
much; just place ccscore:: before the status name when you want to use
it, and use it like a regular enum (e.g.,

CCS811Core: :status myLocalReturnStatus;). This just tells the compiler
that the variable name is in a specific place. You'll also have to add the
scope operator to the enum names.

Here’s an example that shows how the status enum can be used:

CCS811Core: :status returnCode = mySensor.beginCore();

Serial.print("beginCore exited with: ");

switch (returnCode)

{

case CCS811Core: :SENSOR_SUCCESS:
Serial.print("SUCCESS");
break;

case CCS811Core: :SENSOR_ID_ERROR:
Serial.print("ID_ERROR");
break;

case CCS811Core::SENSOR_I2C_ERROR:
Serial.print("I2C_ERROR");
break;

case CCS811Core: :SENSOR_INTERNAL_ERROR:
Serial.print("INTERNAL_ERROR");
break;

case CCS811Core: :SENSOR_GENERIC_ERROR:
Serial.print("GENERIC_ERROR");
break;

default:
Serial.print("Unspecified error.");

}

The library also defines names for CCS811 registers, if you're using direct
read and write functions. These are globally scoped and can be used
anywhere.

//Register addresses

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CSS811_STATUS @x00
CSS811_MEAS_MODE @x@1
CSS811_ALG_RESULT_DATA 0x@2
CSS811_RAW_DATA 0x@3
CSS811_ENV_DATA 0x@5
CSS811_NTC 0x06
€SS811_THRESHOLDS @x10
CSS811_BASELINE @Ox11
CSS811_HW_ID ©x20
CSS811_HW_VERSION 0x21
CSS811_FW_BOOT_VERSION 0x23
CSS811_FW_APP_VERSION @x24
CSS811_ERROR_ID OXE®
CSS811_APP_START OxF4
CSS811_SW_RESET OxXFF

Examples

For the following examples, which can be found here, we will use our
libraries along with a few functions to view our data. Our code’s preamble,
setup() , and function definitions will all be the same. However, the

void loop() will change between the examples. To get started, we first
have to initialize our sensors with our preamble, setup() , and loop() as
shown below.

Page 12 of 17

Page 13 of 17

#include <SparkFunBME280.h>
#include <SparkFunCCS811.h>

#define CCS811_ADDR ©x5B //Default I2C Address
//#define CCS811_ADDR ©x5A //Alternate I2C Address

//Global sensor objects
CCS811 myCCS811(CCS811_ADDR);
BME280 myBME280;

void setup()
{

Serial.begin(9600);

Serial.println();

Serial.println("Apply BME280 data to CCS811 for compensatio
n.");

//This begins the CCS811 sensor and prints error status of .
begin()
CCS811Core: :status returnCode = myCCS811.begin();
if (returnCode != CCS811Core::SENSOR_SUCCESS)
{
Serial.println("Problem with CCS811");
printDriverError(returnCode);
}
else
{
Serial.println("CCS811 online");
}

//Initialize BME280

//For I2C, enable the following and disable the SPI section
myBME280.settings.commInterface = I2C_MODE;
myBME280.settings.I2CAddress = 0x77;
myBME280.settings.runMode = 3; //Normal mode
myBME280.settings.tStandby = 0;

myBME280.settings.filter = 4;
myBME280.settings.tempOverSample = 5;
myBME280.settings.pressOverSample = 5;
myBME280.settings.humidOverSample = 5;

//Calling .begin() causes the settings to be loaded

delay(10); //Make sure sensor had enough time to turn on. B
ME280 requires 2ms to start up.

byte id = myBME28@.begin(); //Returns ID of 0x60 if successf

ul
if (id !'= ox60)
{
Serial.println("Problem with BME280");
¥
else
{
Serial.println("BME280 online");
¥
}

Our void loop will call a few functions that are not included in our libraries,
so we must define them after our void loop . Don’t worry about defining
prototypes, the Arduino IDE does this for us. Paste the below code below
your void loop to define the necessary functions to print data and errors.

Page 14 of 17

void printData()

{
Serial.print(" CO2[");
Serial.print(myCCS811.getC02());
Serial.print("]ppm");

Serial.print(" TVOC[");
Serial.print(myCCS811.getTVOC());
Serial.print("]ppb");

Serial.print(" temp[");
Serial.print(myBME280.readTempC(), 1);
Serial.print("]C");

//Serial.print(" temp[");
//Serial.print(myBME280.readTempF(), 1);
//Serial.print("]F");

Serial.print(" pressure[");
Serial.print(myBME280.readFloatPressure(), 2);
Serial.print("]Pa");

//Serial.print(" pressure[");

//Serial.print((myBME280@.readFloatPressure() * 0.0002953),
2);

//Serial.print("]InHg");

//Serial.print("altitude[");
//Serial.print(myBME280.readFloatAltitudeMeters(), 2);
//Serial.print("Im");

//Serial.print("altitude[");
//Serial.print(myBME280.readFloatAltitudeFeet(), 2);
//Serial.print("]ft");

Serial.print(" humidity[");
Serial.print(myBME280.readFloatHumidity(), 0);
Serial.print("]1%");

Serial.println();

void printDriverError(CCS811Core::status errorCode)
{
switch (errorCode)
{

case CCS811Core: :SENSOR_SUCCESS:
Serial.print("SUCCESS");
break;

case CCS811Core: :SENSOR_ID_ERROR:
Serial.print("ID_ERROR");
break;

case CCS811Core: :SENSOR_I2C_ERROR:
Serial.print("I2C_ERROR");
break;

case CCS811Core: :SENSOR_INTERNAL_ERROR:
Serial.print("INTERNAL_ERROR");
break;

case CCS811Core: :SENSOR_GENERIC_ERROR:
Serial.print("GENERIC_ERROR");
break;

default:
Serial.print("Unspecified error.");

Example 1 - Basic Readings

The void loop shown below will get you up and running taking readings of
CO,, tVOC(total volatile organic compounds), temperature, pressure, and
humidity. Once this sketch is uploaded, open the serial monitor with a baud
rate of 9600 to display the air quality data from the sensor.

void loop()
{
if (myCCS811.dataAvailable()) //Check to see if CCS811 has n
ew data (it's the slowest sensor)
{
myCCS811.readAlgorithmResults(); //Read latest from CCS81
1 and update tVOC and CO2 variables
//getWeather(); //Get latest humidity/pressure/temp data f
rom BME280
printData(); //Pretty print all the data
}
else if (myCCS811.checkForStatusError()) //Check to see if C
CS811 has thrown an error
{
Serial.println(myCCS811.getErrorRegister()); //Prints what
ever CSS811 error flags are detected

}

delay(2000); //Wait for next reading
}

The output of this example should look something like the photo below.

Example 2 - Calibrated Readings

The void loop shown below will get you started taking calibrated readings
from the CCS811. When humidity and temperature are known by the
CCS811, itis able to refine it's tVOC and CO, readings. This sketch feeds
the temperature and humidity from the BME280 to the CCS811 in order to
attain greater accuracy.

Page 15 of 17

Page 16 of 17

void loop()
{

//Check to see if data is available
if (myCCS811.dataAvailable())

{
//Calling this function updates the global tVOC and eC02 v
ariables
myCCS811.readAlgorithmResults();
//printData fetches the values of tVOC and eCO02
printData();

float BMEtempC = myBME28@.readTempC();
float BMEhumid = myBME280.readFloatHumidity();

Serial.print("Applying new values (deg C, %): ");
Serial.print(BMEtempC);

Serial.print(",");

Serial.println(BMEhumid);

Serial.println();

//This sends the temperature data to the CCS811
myCCS811.setEnvironmentalData(BMEhumid, BMEtempC);

¥
else if (myCCS811.checkForStatusError())

{
Serial.println(myCCS811.getErrorRegister()); //Prints what
ever CSS811 error flags are detected

¥

delay(2000); //Wait for next reading
}

The output for this example is shown below.

Resources and Going Further

Now that you’ve successfully got your CCS811+BME280 combo board
working and taking air quality readings, it's time to incorporate it into your
own project!

For more information on the CCS811 or BME280, check out the resources
below:

+ CCS811 Datasheet-DS000459 (PDF)

* Bosch BME280 Datasheet (PDF)

ASHRAE Allowable CO2 Levels (PDF)

» CC-000774-AN-3-Assembly guidelines for CCS811 (PDF)

» CC-000783-AN-1-Mechanical Considerations for CCS811_0 (PDF)
+ CCS811 Firmware Download AN000371 (PDF)

» CCS811 Programming Guide-AN000369 (PDF)

« Indoor Air Quality Investigations TVOCs EU (PDF)

» SparkFun CCS811/BME280 Arduino Library GitHub Repository

» SparkFun CCS811 GitHub Repository

» SparkFun BME280 GitHub Repository
» SparkFun Qwiic Connect System

Need some inspiration for your next project? Check out some of these

related tutorials:

TMP006 Hookup Guide
How to get started reading
temperature with the TMP006
sensor.

Weather Station Wirelessly
Connected to Wunderground
Build your own open-source, official
Wunderground weather station that
connects over WiFi via an Electric
Imp.

T5403 Barometric Pressure Sensor
Hookup Guide

T5403 Barometric Pressure Sensor
Hookup Guide

micro:climate Kit Experiment
Guide

A weather station kit that is built on
top of the inexpensive, easy-to-use
micro:bit and Microsoft MakeCode.

Let us know how you use your air quality sensor!

Page 17 of 17

https://learn.sparkfun.com/tutorials/ccs811bme280-qwiic-environmental-combo-breakout-... 9/11/2017

