
 i

Terasic PCI-X Development Board

 ii

CONTENTS

Chapter 1 PCI Package ...1

1.1 Package contents..1
1.2 Getting Help...1
1.3 Revision History ..2

Chapter 2 Introduction..3

2.1 General Description ...3
2.2 Layout and Components ..3
2.3 Block Diagram of the PCI Board...5
2.4 Power-up the PCI Board ..6

Chapter 3 Components & Interfaces ...7

3.1 Clocking Circuitry ...7
3.1.1 Clock & Programmable PLL ..8

3.2 Switch ..8
3.3 HSTC Expansion Connectors ..9
3.4 Off-Chip Memory ..17

3.4.1 DDR2 SO-DIMM Module..17

Chapter 4 Setup PCI Board ..21

4.1 System Requirement ..21
4.2 Hardware Installation: PCI Board..21
4.3 Software Installation: PCI Kernel Driver ..22
4.4 Install License File...23
4.5 Diagnoses...23

Chapter 5 PCI System Builder ...24

5.1 Introduction..24
5.2 Quartus Top Design ...25
5.3 Built-in Logic...26
5.4 Save Configuration ..27
5.5 Generated Code..27

Chapter 6 Host Software Library and Utility ...30

6.1 PCI Software Stack ..30
6.2 Data Structure in TERASIC_API.h ...31
6.3 API List of TERASIC_API.DLL...31
6.4 API Description of TERASIC_DLL..32

 iii

6.5 PCI Control Panel Utility...38

Chapter 7 Reference Design..41

7.1 Remote Control LED ...41
7.2 Button IRQ...46
7.3 DDR2 Access ...50

Chapter 8 Multi-Port Memory Controller ..55

8.1 Principle of Read/Write Port..55
8.1.1 Write Port ...55
8.1.2 Read Port..56
8.2 Port Interface..57
8.2.1 Simple Write Port...58
8.2.2 Simple Read Port ...59
8.2.3 Enhanced port ..60

Chapter 9 PCI Local Interface ...62

9.1 PCI Local Write/Read Interface...62
9.2 PCI Interrupt ..63

Appendix A Programming the Serial Configuration device66

 1

Chapter 1
PCI Package

The PCI package contains all components needed to use the PCI board in conjunction with a
computer that runs the Microsoft Windows software.

1.1 Package contents
The PCI Package includes:

 Cyclone III PCI development board
 Terasic USB Blaster
 USB Cable for FPGA programming and control
 CD-ROM containing the User Manual, the Control Panel utility, the PCI System

Builder and reference designs.
 THDB_HLB
 THDB_HFF
 Screw and Copper Pillar Package
 Power Cable

1.2 Getting Help
Here are the addresses where you can get help if you encounter problems:

• Altera Corporation
101 Innovation Drive
San Jose, California, 95134 USA
Email: mysupport@altera.com

• Terasic Technologies

No. 356, Sec. 1, Fusing E. Rd.
Jhubei City, HsinChu County, Taiwan, 302
Email: support@terasic.com
Web: www.terasic.com

mailto:mysupport@altera.com
mailto:support@terasic.com
http://www.terasic.com/

Revision History

 2

1.3 Revision History

Date Version Changes

2008.12 First publication

 3

Chapter 2

Introduction
This chapter provides an introduction of the PCI Board features and design characteristic.

2.1 General Description
The Cyclone® III PCI development board provides a hardware platform for developing and
prototyping low-power, high-performance, logic-intensive PCI-based designs. The board provides a
high-density of the memory to facilitate the design and development of FPGA designs which need
huge memory storage, and also includes Low-Voltage Differential Signaling (LVDS) interface of
the High-Speed Terasic Connectors (HSTCs) for extra high-speed interface application.

Based on Cyclone® III FPGA and using Altera MegaCore functions, Terasic IP and the reference
design, Cyclone III PCI Development Board allows users to quickly implement the design and
solve design problems that require time-consuming, custom solutions.

Finally, to simplify the design process, we provide the software which calls “PCI System Builder”
that provides a convenient way to build interfaces between host PC and user logic on FPGA, and
also supports the interface of multi-port controller which allows shared access to a unique external
memory. For more details about PCI System Builder, refer to Chapter 4 PCI System Builder.

2.2 Layout and Components
A photograph of the Cyclone® III PCI development board is shown in Figure 2.1 and 2.2. They
depict the layout of the board and indicate the location of the connectors and key components.

Figure 2.1 Cyclone® III PCI development board

HSTC
Connector

GPIO
Button

Cyclone® III
3C120 FPGA

Cyclone® III
3C25 FPGA

Power
Module

Standalone
Power Input

JTAG LED Programmable PLL LED

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=%E5%AF%86%E5%BA%A6

Layout and Components

 4

Figure 2.2 Cyclone® III PCI development board

The following hardware is provided on the PCI board:

 Altera Cyclone® III 3C120 FPGA device

• 119,088 logic elements (LEs)
• 3,981,312 total RAM bits
• 288 18 x 18 multiplier blocks

 Altera Cyclone® III 3C25 FPGA device (PCI Bridge).
 Altera Serial Configuration device

• EPCS64
• EPCS16

 On-board memories

• Up to 4GBytes DDR2 SO-DIMM
 Three HSTCs

• 120 differential pair signals
• 20 dedicated clock signals (8 differential pair & 4 single-end)

 PCI bus interfaces.
These features allow the user to implement the designs that need an enormous memory and
high-speed data transfer. In addition to these hardware features, the PCI board has software support
for PCI bus DMA, bus interrupt functions and a control panel facility to access various components.

In order to use the TC3B-PCI board, the user has to be familiar with the Quartus II software. The
necessary knowledge can be acquired by reading the tutorials Quartus II Introduction (which exists
in three versions based on the design entry method used, namely Verilog, VHDL or schematic
entry).

DDR2 SO-DIMM

 5

2.3 Block Diagram of the PCI Board
Figure 2.3 gives the high-level block diagram of the PCI board. To provide maximum flexibility for
the user, all connections are made through the Cyclone® III FPGA device. Thus, the user can
configure the FPGA to implement any system design.

Figure 2.3 High level block diagram of the PCI board

Following is more detailed information about the blocks in Figure 2.3:
Cyclone® III 3C120 FPGA

• 119,088 LEs
• 432 M4K RAM blocks
• 3,981,312 total RAM bits
• 288 18x18 multiplier blocks
• Four phase locked loops (PLLs)

Cyclone® III 3C25 FPGA

Power-up the PCI Board

 6

• 24,624 LEs
• 66 M4K RAM blocks
• 608,256 total RAM bits
• 66 18x18 multiplier blocks
• Four PLLs

Serial Configuration device

• Altera’s EPCS64 & EPCS16 serial configuration device
• In-system programming mode via JTAG interface (1)

DDR2 SDRAM

• 64-bits DDR2 SO-DIMM
• Up to 4GBytes

LED & button

• 4 user-controlled LEDs
• 2 user-controlled Buttons

Clock inputs

• Programmable PLL (80kHz ~ 200MHz)
• 100MHz oscillator

Three 180-pin HSTC expansion connectors

• 260 Cyclone® III I/O pins
• High-Speed connector up to GHz frequency

2.4 Power-up the PCI Board
The PCI Board contains the following ways to power-up:
1. Plug into PCI bus
2. Connect external power cable
After the PCI board powers up, the on-board configuration device which ships pre-programmed
with the factory design, automatically configures the Cyclone® III device and the user-controlled
LEDs will flash in a “Knight Rider” pattern.

 7

Chapter 3
Components & Interfaces

This chapter describes functions of the components and interfaces on the development board,
including detailed pin-out information to enable designers to create custom FPGA designs.

3.1 Clocking Circuitry
In order to achieve the design requirement which needs different frequency clock sources, the
development board provides two clock sources that connect to dedicated clock input pins of
Cyclone® III FPGA. One of the clock sources is a 100MHz oscillator and another is a
programmable PLL.

For LVDS clocking, the expansion connectors (HSTCs) include the dedicated differential clock
inputs and PLL output pins of Cyclone® III FPGA to implement high-speed clocking interface.
Figure 3.1 shows the clocking diagram of the PCI board.

Figure 3.1 Clocking diagram of the PCI Board

LL : Dedicated PLL Output

 : Dedicated Clock Input

D : Differential IO

Switch

 8

3.1.1 Clock & Programmable PLL
The Cyclone® III PCI development board provides a programmable PLL which is drove by a 50
MHz oscillator and utilizes 2-wire serial interface SDAT and SCLK that operates up to 400
kbits/sec in read or write mode. The output frequency range of the PLL is 80 KHz to 200 MHz. A
block diagram of the clock and on-board PLL showing connections to the Cyclone III FPGA is
given in Figure 3.2. The associated pin assignments appear in Table 3.1

Figure 3.2 Block diagram of the clock and on-board PLL

Signal Name FPGA Pin No. Description

OSC_100 PIN_AG14 100 MHz Oscillator

PLL_CLK PIN_B15 PLL Clock Output

PLL_SCL PIN_AB24 PLL Serial Interface - Clock

PLL_SDA PIN_AB23 PLL Serial Interface - Data

Table 3.1 Pin assignments of clock and on-board PLL

3.2 Switch
The Switch of Cyclone III PCI Board is used to select the expansion connectors IO voltage. Table
3.2 lists voltage selection by jumper.

Pin number Expansion

IO Voltage 1 2 3 4

1.2V On Off Off Off

1.5V Off Off Off Off

1.8V Off On Off Off

2.5V Off Off On Off

3.3V Off Off Off On

Table 3.2 Voltage selection of the expansion IO

 9

3.3 HSTC Expansion Connectors
The Cyclone® III PCI development board contains three HSTC connectors (HSTC1, HSTC2 and
HSTC3). The HSTC2 fully shares pins with HSTC3. These expansion connectors have total 240
bi-directional I/Os, 10 dedicated clock inputs and 10 PLL outputs of the Cyclone® III FPGA, and
also provides DC +12V, DC +5V, DC +3.3V and GND pins. Furthermore, the voltage level of the
I/O pins on the expansion connectors can be adjusted to 3.3V, 2.5V, 1.8V, 1.5V, 1.2V by using
on-board switch.

High-speed differential I/O standards have become popular in high-speed interfaces because of their
significant advantages over single-ended I/O standards. In response to the current market need, the
PCI board supports LVDS channel up to 60 transmitters and 60 receivers on the expansion
connectors. The channels had already achieved data rates of 600Mbps on Cyclone® III PCI
development board. In summary, these features of the expansion connectors give applications the
most flexibility for a variety of users. Figure 3.3 shows the schematic of HSTC expansion connector.
Table 3.3 and 3.4 gives the pin assignment.

Figure 3.3 Schematic of the HSTC expansion connector

HSTC Expansion Connectors

 10

Schematic Signal Name Connector pin no. FPGA Pin Name

HSTC3_CLKIN_n0 HSTC2_CLKIN_n0 4 PIN_J1

HSTC3_CLKIN_p0 HSTC2_CLKIN_p0 6 PIN_J2

HSTC3_RX_n0 HSTC2_RX_n0 10 PIN_C2

HSTC3_RX_p0 HSTC2_RX_p0 12 PIN_D3

HSTC3_RX_n1 HSTC2_RX_n1 16 PIN_D1

HSTC3_RX_p1 HSTC2_RX_p1 18 PIN_D2

HSTC3_RX_n2 HSTC2_RX_n2 22 PIN_F3

HSTC3_RX_p2 HSTC2_RX_p2 24 PIN_E3

HSTC3_RX_n3 HSTC2_RX_n3 28 PIN_F1

HSTC3_RX_p3 HSTC2_RX_p3 30 PIN_F2

HSTC3_RX_n4 HSTC2_RX_n4 34 PIN_G3

HSTC3_RX_p4 HSTC2_RX_p4 36 PIN_G4

HSTC3_RX_n5 HSTC2_RX_n5 40 PIN_H3

HSTC3_RX_p5 HSTC2_RX_p5 42 PIN_H4

HSTC3_RX_n6 HSTC2_RX_n6 46 PIN_J3

HSTC3_RX_p6 HSTC2_RX_p6 48 PIN_J4

HSTC3_RX_n7 HSTC2_RX_n7 52 PIN_G5

HSTC3_RX_p7 HSTC2_RX_p7 54 PIN_G6

HSTC3_RX_n8 HSTC2_RX_n8 58 PIN_N3

HSTC3_RX_p8 HSTC2_RX_p8 60 PIN_N4

HSTC3_CLKIN_n1 HSTC2_CLKIN_n1 64 PIN_Y1

HSTC3_CLKIN_p1 HSTC2_CLKIN_p1 66 PIN_Y2

HSTC3_RX_n9 HSTC2_RX_n9 70 PIN_H24

HSTC3_RX_p9 HSTC2_RX_p9 72 PIN_H23

HSTC3_RX_n10 HSTC2_RX_n10 76 PIN_G26

HSTC3_RX_p10 HSTC2_RX_p10 78 PIN_G25

HSTC3_RX_n11 HSTC2_RX_n11 82 PIN_J24

HSTC3_RX_p11 HSTC2_RX_p11 84 PIN_J23

HSTC3_RX_n12 HSTC2_RX_n12 88 PIN_K22

HSTC3_RX_p12 HSTC2_RX_p12 90 PIN_K21

HSTC3_RX_n13 HSTC2_RX_n13 94 PIN_L22

HSTC3_RX_p13 HSTC2_RX_p13 96 PIN_L21

HSTC3_RX_n14 HSTC2_RX_n14 100 PIN_V22

HSTC3_RX_p14 HSTC2_RX_p14 102 PIN_U22

HSTC3_RX_n15 HSTC2_RX_n15 106 PIN_M1

HSTC3_RX_p15 HSTC2_RX_p15 108 PIN_M2

HSTC3_RX_n16 HSTC2_RX_n16 112 PIN_P1

 11

HSTC3_RX_p16 HSTC2_RX_p16 114 PIN_P2

HSTC3_RX_n17 HSTC2_RX_n17 118 PIN_R1

HSTC3_RX_p17 HSTC2_RX_p17 120 PIN_R2

HSTC3_CLKIN_2 HSTC2_CLKIN_2 124 PIN_R5

HSTC3_RX_n18 HSTC2_RX_n18 134 PIN_T3

HSTC3_RX_p18 HSTC2_RX_p18 136 PIN_T4

HSTC3_RX_n19 HSTC2_RX_n19 138 PIN_R6

HSTC3_RX_p19 HSTC2_RX_p19 140 PIN_R7

HSTC3_RX_n20 HSTC2_RX_n20 142 PIN_AA3

HSTC3_RX_p20 HSTC2_RX_p20 144 PIN_AA4

HSTC3_RX_n21 HSTC2_RX_n21 146 PIN_R4

HSTC3_RX_p21 HSTC2_RX_p21 148 PIN_R3

HSTC3_RX_n22 HSTC2_RX_n22 150 PIN_V5

HSTC3_RX_p22 HSTC2_RX_p22 152 PIN_V6

HSTC3_RX_n23 HSTC2_RX_n23 154 PIN_U4

HSTC3_RX_p23 HSTC2_RX_p23 156 PIN_U3

HSTC3_RX_n24 HSTC2_RX_n24 158 PIN_AC1

HSTC3_RX_p24 HSTC2_RX_p24 160 PIN_AC2

HSTC3_RX_n25 HSTC2_RX_n25 162 PIN_V7

HSTC3_RX_p25 HSTC2_RX_p25 164 PIN_V8

HSTC3_RX_n26 HSTC2_RX_n26 166 PIN_AD1

HSTC3_RX_p26 HSTC2_RX_p26 168 PIN_AD2

HSTC3_RX_n27 HSTC2_RX_n27 170 PIN_W3

HSTC3_RX_p27 HSTC2_RX_p27 172 PIN_W4

HSTC3_RX_n28 HSTC2_RX_n28 174 PIN_AE1

HSTC3_RX_p28 HSTC2_RX_p28 176 PIN_AE2

HSTC3_RX_n29 HSTC2_RX_n29 178 PIN_AD3

HSTC3_RX_p29 HSTC2_RX_p29 180 PIN_AC3

HSTC3_CLKOUT_n0 HSTC2_CLKOUT_n0 3 PIN_G1

HSTC3_CLKOUT_p0 HSTC2_CLKOUT_p0 5 PIN_G2

HSTC3_TX_n0 HSTC2_TX_n0 9 PIN_K1

HSTC3_TX_p0 HSTC2_TX_p0 11 PIN_K2

HSTC3_TX_n1 HSTC2_TX_n1 15 PIN_K3

HSTC3_TX_p1 HSTC2_TX_p1 17 PIN_K4

HSTC3_TX_n2 HSTC2_TX_n2 21 PIN_L8

HSTC3_TX_p2 HSTC2_TX_p2 23 PIN_K8

HSTC3_TX_n3 HSTC2_TX_n3 27 PIN_K7

HSTC3_TX_p3 HSTC2_TX_p3 29 PIN_J7

HSTC Expansion Connectors

 12

HSTC3_TX_n4 HSTC2_TX_n4 33 PIN_L6

HSTC3_TX_p4 HSTC2_TX_p4 35 PIN_L7

HSTC3_TX_n5 HSTC2_TX_n5 39 PIN_J5

HSTC3_TX_p5 HSTC2_TX_p5 41 PIN_J6

HSTC3_TX_n6 HSTC2_TX_n6 45 PIN_M3

HSTC3_TX_p6 HSTC2_TX_p6 47 PIN_M4

HSTC3_TX_n7 HSTC2_TX_n7 51 PIN_L3

HSTC3_TX_p7 HSTC2_TX_p7 53 PIN_L4

HSTC3_TX_n8 HSTC2_TX_n8 57 PIN_M7

HSTC3_TX_p8 HSTC2_TX_p8 59 PIN_M8

HSTC3_CLKOUT_n1 HSTC2_CLKOUT_n1 63 PIN_L1

HSTC3_CLKOUT_p1 HSTC2_CLKOUT_p1 65 PIN_L2

HSTC3_TX_n9 HSTC2_TX_n9 69 PIN_F25

HSTC3_TX_p9 HSTC2_TX_p9 71 PIN_F24

HSTC3_TX_n10 HSTC2_TX_n10 75 PIN_G24

HSTC3_TX_p10 HSTC2_TX_p10 77 PIN_G23

HSTC3_TX_n11 HSTC2_TX_n11 81 PIN_K26

HSTC3_TX_p11 HSTC2_TX_p11 83 PIN_K25

HSTC3_TX_n12 HSTC2_TX_n12 87 PIN_U26

HSTC3_TX_p12 HSTC2_TX_p12 89 PIN_U25

HSTC3_TX_n13 HSTC2_TX_n13 93 PIN_V26

HSTC3_TX_p13 HSTC2_TX_p13 95 PIN_V25

HSTC3_TX_n14 HSTC2_TX_n14 99 PIN_V24

HSTC3_TX_p14 HSTC2_TX_p14 101 PIN_V23

HSTC3_TX_n15 HSTC2_TX_n15 105 PIN_W21

HSTC3_TX_p15 HSTC2_TX_p15 107 PIN_V21

HSTC3_TX_n16 HSTC2_TX_n16 111 PIN_Y22

HSTC3_TX_p16 HSTC2_TX_p16 113 PIN_W22

HSTC3_TX_n17 HSTC2_TX_n17 117 PIN_Y7

HSTC3_TX_p17 HSTC2_TX_p17 119 PIN_W8

HSTC3_CLKOUT_2 HSTC2_CLKOUT_2 123 PIN_AB3

HSTC3_TX_n18 HSTC2_TX_n18 133 PIN_V1

HSTC3_TX_p18 HSTC2_TX_p18 135 PIN_V2

HSTC3_TX_n19 HSTC2_TX_n19 137 PIN_U1

HSTC3_TX_p19 HSTC2_TX_p19 139 PIN_U2

HSTC3_TX_n20 HSTC2_TX_n20 141 PIN_V3

HSTC3_TX_p20 HSTC2_TX_p20 143 PIN_V4

HSTC3_TX_n21 HSTC2_TX_n21 145 PIN_U5

HSTC3_TX_p21 HSTC2_TX_p21 147 PIN_U6

 13

HSTC3_TX_n22 HSTC2_TX_n22 149 PIN_Y5

HSTC3_TX_p22 HSTC2_TX_p22 151 PIN_Y6

HSTC3_TX_n23 HSTC2_TX_n23 153 PIN_W1

HSTC3_TX_p23 HSTC2_TX_p23 155 PIN_W2

HSTC3_TX_n24 HSTC2_TX_n24 157 PIN_AB1

HSTC3_TX_p24 HSTC2_TX_p24 159 PIN_AB2

HSTC3_TX_n25 HSTC2_TX_n25 161 PIN_Y3

HSTC3_TX_p25 HSTC2_TX_p25 163 PIN_Y4

HSTC3_TX_n26 HSTC2_TX_n26 165 PIN_AA5

HSTC3_TX_p26 HSTC2_TX_p26 167 PIN_AA6

HSTC3_TX_n27 HSTC2_TX_n27 169 PIN_AB5

HSTC3_TX_p27 HSTC2_TX_p27 171 PIN_AB6

HSTC3_TX_n28 HSTC2_TX_n28 173 PIN_AF2

HSTC3_TX_p28 HSTC2_TX_p28 175 PIN_AE3

HSTC3_TX_n29 HSTC2_TX_n29 177 PIN_AC4

HSTC3_TX_p29 HSTC2_TX_p29 179 PIN_AC5

Table 3.3 Pin assignments of the HSTC2 and HSTC3

Schematic Signal Name Board Reference FPGA Pin Name

HSTC1_CLKIN_n0 4 PIN_J28

HSTC1_CLKIN_p0 6 PIN_J27

HSTC1_RX_n0 10 PIN_L24

HSTC1_RX_p0 12 PIN_L23

HSTC1_RX_n1 16 PIN_R21

HSTC1_RX_p1 18 PIN_P21

HSTC1_RX_n2 22 PIN_C27

HSTC1_RX_p2 24 PIN_D26

HSTC1_RX_n3 28 PIN_R23

HSTC1_RX_p3 30 PIN_R22

HSTC1_RX_n4 34 PIN_E26

HSTC1_RX_p4 36 PIN_F26

HSTC1_RX_n5 40 PIN_H26

HSTC1_RX_p5 42 PIN_H25

HSTC1_RX_n6 46 PIN_AA13

HSTC1_RX_p6 48 PIN_Y13

HSTC1_RX_n7 52 PIN_AB14

HSTC1_RX_p7 54 PIN_AA14

HSTC1_RX_n8 58 PIN_AD11

HSTC Expansion Connectors

 14

HSTC1_RX_p8 60 PIN_AC11

HSTC1_CLKIN_n1 64 PIN_Y28

HSTC1_CLKIN_p1 66 PIN_Y27

HSTC1_RX_n9 70 PIN_AA10

HSTC1_RX_p9 72 PIN_AA8

HSTC1_RX_n10 76 PIN_AB8

HSTC1_RX_p10 78 PIN_AB9

HSTC1_RX_n11 82 PIN_AB12

HSTC1_RX_p11 84 PIN_AC12

HSTC1_RX_n12 88 PIN_AC7

HSTC1_RX_p12 90 PIN_AD8

HSTC1_RX_n13 94 PIN_AF11

HSTC1_RX_p13 96 PIN_AE11

HSTC1_RX_n14 100 PIN_AF14

HSTC1_RX_p14 102 PIN_AE14

HSTC1_RX_n15 106 PIN_AF12

HSTC1_RX_p15 108 PIN_AE12

HSTC1_RX_n16 112 PIN_AH10

HSTC1_RX_p16 114 PIN_AG10

HSTC1_RX_n17 118 PIN_AH8

HSTC1_RX_p17 120 PIN_AG8

HSTC1_CLKIN_2 124 PIN_L26

HSTC1_RX_n18 134 PIN_AC10

HSTC1_RX_p18 136 PIN_AB10

HSTC1_RX_n19 138 PIN_AC8

HSTC1_RX_p19 140 PIN_AB7

HSTC1_RX_n20 142 PIN_AH6

HSTC1_RX_p20 144 PIN_AG6

HSTC1_RX_n21 146 PIN_AH12

HSTC1_RX_p21 148 PIN_AG12

HSTC1_RX_n22 150 PIN_AF8

HSTC1_RX_p22 152 PIN_AE8

HSTC1_RX_n23 154 PIN_AF13

HSTC1_RX_p23 156 PIN_AE13

HSTC1_RX_n24 158 PIN_AH4

HSTC1_RX_p24 160 PIN_AG4

HSTC1_RX_n25 162 PIN_AH11

HSTC1_RX_p25 164 PIN_AG11

HSTC1_RX_n26 166 PIN_AH7

 15

HSTC1_RX_p26 168 PIN_AG7

HSTC1_RX_n27 170 PIN_AF10

HSTC1_RX_p27 172 PIN_AE10

HSTC1_RX_n28 174 PIN_AA12

HSTC1_RX_p28 176 PIN_Y12

HSTC1_RX_n29 178 PIN_AF7

HSTC1_RX_p29 180 PIN_AE7

HSTC1_CLKOUT_n0 3 PIN_J26

HSTC1_CLKOUT_p0 5 PIN_J25

HSTC1_TX_n0 9 PIN_D28

HSTC1_TX_p0 11 PIN_D27

HSTC1_TX_n1 15 PIN_E28

HSTC1_TX_p1 17 PIN_E27

HSTC1_TX_n2 21 PIN_F28

HSTC1_TX_p2 23 PIN_F27

HSTC1_TX_n3 27 PIN_G28

HSTC1_TX_p3 29 PIN_G27

HSTC1_TX_n4 33 PIN_K28

HSTC1_TX_p4 35 PIN_K27

HSTC1_TX_n5 39 PIN_M28

HSTC1_TX_p5 41 PIN_M27

HSTC1_TX_n6 45 PIN_P28

HSTC1_TX_p6 47 PIN_P27

HSTC1_TX_n7 51 PIN_L28

HSTC1_TX_p7 53 PIN_L27

HSTC1_TX_n8 57 PIN_M26

HSTC1_TX_p8 59 PIN_M25

HSTC1_CLKOUT_n1 63 PIN_AF5

HSTC1_CLKOUT_p1 65 PIN_AE5

HSTC1_TX_n9 69 PIN_N26

HSTC1_TX_p9 71 PIN_N25

HSTC1_TX_n10 75 PIN_P26

HSTC1_TX_p10 77 PIN_P25

HSTC1_TX_n11 81 PIN_R28

HSTC1_TX_p11 83 PIN_R27

HSTC1_TX_n12 87 PIN_T26

HSTC1_TX_p12 89 PIN_T25

HSTC1_TX_n13 93 PIN_R26

HSTC Expansion Connectors

 16

HSTC1_TX_p13 95 PIN_R25

HSTC1_TX_n14 99 PIN_U28

HSTC1_TX_p14 101 PIN_U27

HSTC1_TX_n15 105 PIN_V28

HSTC1_TX_p15 107 PIN_V27

HSTC1_TX_n16 111 PIN_W27

HSTC1_TX_p16 113 PIN_W28

HSTC1_TX_n17 117 PIN_T22

HSTC1_TX_p17 119 PIN_T21

HSTC1_CLKOUT_2 123 PIN_H22

HSTC1_TX_n18 133 PIN_W26

HSTC1_TX_p18 135 PIN_W25

HSTC1_TX_n19 137 PIN_AC28

HSTC1_TX_p19 139 PIN_AC27

HSTC1_TX_n20 141 PIN_Y26

HSTC1_TX_p20 143 PIN_Y25

HSTC1_TX_n21 145 PIN_AA26

HSTC1_TX_p21 147 PIN_AA25

HSTC1_TX_n22 149 PIN_AB28

HSTC1_TX_p22 151 PIN_AB27

HSTC1_TX_n23 153 PIN_AB26

HSTC1_TX_p23 155 PIN_AB25

HSTC1_TX_n24 157 PIN_AD28

HSTC1_TX_p24 159 PIN_AD27

HSTC1_TX_n25 161 PIN_AD26

HSTC1_TX_p25 163 PIN_AC26

HSTC1_TX_n26 165 PIN_AF27

HSTC1_TX_p26 167 PIN_AE26

HSTC1_TX_n27 169 PIN_AE28

HSTC1_TX_p27 171 PIN_AE27

HSTC1_TX_n28 173 PIN_AC25

HSTC1_TX_p28 175 PIN_AC24

HSTC1_TX_n29 177 PIN_Y24

HSTC1_TX_p29 179 PIN_Y23

Table 3.4 Pin assignments of the HSTC1

 17

3.4 Off-Chip Memory
The Cyclone® III PCI development board provides the large-capacity and high-speed memory
interface.

3.4.1 DDR2 SO-DIMM Module
The board has a DDR2 SDRAM SO-DIMM memory interface with 64-bit data width. The target
speed is 200 MHz DDR for a total theoretical bandwidth of nearly 25 Gb/s. Table 3.5 lists DDR2
SDRAM SO-DIMM pin-out as well as corresponding FPGA pin numbers.

Schematic Signal Name Connector pin no. FPGA Pin Name

DDR2_A0 102 PIN_G11

DDR2_A1 101 PIN_D15

DDR2_A2 100 PIN_E10

DDR2_A3 99 PIN_H15

DDR2_A4 98 PIN_A10

DDR2_A5 97 PIN_J15

DDR2_A6 94 PIN_F8

DDR2_A7 92 PIN_D7

DDR2_A8 93 PIN_F14

DDR2_CLK_P0 30 PIN_D8

DDR2_CLK_P1 164 PIN_J19

DDR2_CLK_N0 32 PIN_C8

DDR2_CLK_N1 166 PIN_H19

DDR2_A9 91 PIN_J13

DDR2_A10 105 PIN_F15

DDR2_A11 90 PIN_C7

DDR2_A12 89 PIN_B12

DDR2_A13 116 PIN_D24

DDR2_A14 86 PIN_A6

DDR2_A15 84 PIN_C6

DDR2_DQ0 5 PIN_C10

DDR2_DQ1 7 PIN_E11

DDR2_DQ2 17 PIN_C11

DDR2_DQ3 19 PIN_H13

DDR2_DQ4 4 PIN_B7

DDR2_DQ5 6 PIN_B6

DDR2_DQ6 14 PIN_A7

DDR2_DQ7 16 PIN_D10

Off-Chip Memory

 18

DDR2_DQ8 23 PIN_D13

DDR2_DQ9 25 PIN_C13

DDR2_DQ10 35 PIN_E14

DDR2_DQ11 37 PIN_C14

DDR2_DQ12 20 PIN_C12

DDR2_DQ13 22 PIN_A12

DDR2_DQ14 36 PIN_B11

DDR2_DQ15 38 PIN_A11

DDR2_DQ16 43 PIN_C17

DDR2_DQ17 45 PIN_B18

DDR2_DQ18 55 PIN_A19

DDR2_DQ19 57 PIN_D20

DDR2_DQ20 44 PIN_C16

DDR2_DQ21 46 PIN_E17

DDR2_DQ22 56 PIN_C19

DDR2_DQ23 58 PIN_B19

DDR2_DQ24 61 PIN_C22

DDR2_DQ25 63 PIN_C21

DDR2_DQ26 73 PIN_A22

DDR2_DQ27 75 PIN_C24

DDR2_DQ28 62 PIN_E18

DDR2_DQ29 64 PIN_D21

DDR2_DQ30 74 PIN_B21

DDR2_DQ31 76 PIN_A21

DDR2_DQ32 123 PIN_A23

DDR2_DQ33 125 PIN_D22

DDR2_DQ34 135 PIN_E22

DDR2_DQ35 137 PIN_F21

DDR2_DQ36 124 PIN_B25

DDR2_DQ37 126 PIN_C25

DDR2_DQ38 134 PIN_A26

DDR2_DQ39 136 PIN_B26

DDR2_DQ40 141 PIN_AG17

DDR2_DQ41 143 PIN_AG18

DDR2_DQ42 151 PIN_AF15

DDR2_DQ43 153 PIN_AF16

DDR2_DQ44 140 PIN_AH17

DDR2_DQ45 142 PIN_AH18

DDR2_DQ46 152 PIN_AB16

 19

DDR2_DQ47 154 PIN_AE17

DDR2_DQ48 157 PIN_AD17

DDR2_DQ49 159 PIN_AE19

DDR2_DQ50 173 PIN_AG22

DDR2_DQ51 175 PIN_AF24

DDR2_DQ52 158 PIN_AG21

DDR2_DQ53 160 PIN_AH21

DDR2_DQ54 174 PIN_AH22

DDR2_DQ55 176 PIN_AH23

DDR2_DQ56 179 PIN_AD18

DDR2_DQ57 181 PIN_AF20

DDR2_DQ58 189 PIN_AE21

DDR2_DQ59 191 PIN_AF22

DDR2_DQ60 180 PIN_AE24

DDR2_DQ61 182 PIN_AE25

DDR2_DQ62 192 PIN_AG26

DDR2_DQ63 194 PIN_AH25

DDR2_DQS0 13 PIN_E12

DDR2_DQS1 31 PIN_D12

DDR2_DQS2 51 PIN_B17

DDR2_DQS3 70 PIN_D17

DDR2_DQS4 131 PIN_A25

DDR2_DQS5 148 PIN_AF17

DDR2_DQS6 169 PIN_AE18

DDR2_DQS7 188 PIN_AF26

DDR2_DM0 10 PIN_A8

DDR2_DM1 26 PIN_B10

DDR2_DM2 52 PIN_E15

DDR2_DM3 67 PIN_C20

DDR2_DM4 130 PIN_B23

DDR2_DM5 147 PIN_AC15

DDR2_DM6 170 PIN_AH19

DDR2_DM7 185 PIN_AF25

DDR2_CS_N0 110 PIN_G18

DDR2_CS_N1 115 PIN_D25

DDR2_CKE0 79 PIN_H8

DDR2_CKE1 80 PIN_E8

DDR2_BA0 107 PIN_D16

Off-Chip Memory

 20

DDR2_BA1 106 PIN_A17

DDR2_BA2 85 PIN_H12

DDR2_RAS_N 108 PIN_J16

DDR2_CAS_N 113 PIN_D19

DDR2_WE_N 109 PIN_H16

DDR2_ODT0 114 PIN_E21

DDR2_ODT1 119 PIN_C26

DDR2_SCL 197 PIN_J17

DDR2_SDA 195 PIN_C23

Table 3.5 Pin assignments of the DDR2 SO-DIMM

 21

Chapter 4
Setup PCI Board

This chapter describes how to setup the PCI board and driver on users’ PC.

4.1 System Requirement
 Windows, 32-bits
 One 32 or 64 PCI slot
 Quaruts Installed. Quartus 8.0 or 8.1 is recommended.
 USB-Blaster and USB Cable

4.2 Hardware Installation: PCI Board
Follow these steps to install your PCI board into your computer:

1. Switch SW2 to select the IO voltage level of HSTC on PCI board.

2. Make the connection between the daughter board and PCI board if your design needs it.

Software Installation: PCI Kernel
Driver

 22

3. Switch off the computer and disconnect from the power socket.
4. Remove the cover of the PC.
5. Choose any open slot and insert PCI board.

* The Cyclone® III PCI development board has a Universal PCI Board edge connector.
It can be inserted into any of the PCI slots.

6. Insert bracket screw and ensure that the board sits firmly in the PCI socket.
7. Replace the cover of the PC.
8. Reconnect all power cables and switch the power on.
9. The hardware installation is now complete.

4.3 Software Installation: PCI Kernel Driver
Before users can use Terasic’s PCI library to communicate the PCI board, PCI kernel mode driver
should be installed in users’ PC first.

The kernel driver is located in the “Install PCI Driver” folder of PCI CD-ROM. Please follow
below procedures to install the kernel driver:

10. Copy the folder “Install PCI Driver” to your hard-disk.
11. Double click “PCI_DriverInstall.exe” to launch the installation program.

 23

12. Click “Install” to start installing process.

13. It takes several second to install the driver. When installation is completed, as information
dialog will popup.

14. Click “Exit” to close the installation program.

4.4 Install License File
To compile the project created by PCI system builder, users need to add a specified license to
Quartus. The license file is located in the “license” folder of the PCI CD-ROM.

4.5 Diagnoses
Below shows the procedure to perform the diagnosis:
1. Make sure PCI board is installed on your PC.
2. Make sure PCI driver is installed on your PC.
3. Make sure Quartus is installed on your PC.
4. Copy the “Diagnose” folder in PCI CD-ROM to your hard-disk.
5. Download PCI_TEST.sof to PCI board.
6. Double click “PCI_TEST.exe” to start diagnosis process.
7. The diagnosis will check DDR2 and LED. When diagnosis is completed, the result will display

on the console windows.

Introduction

 24

Chapter 5
PCI System Builder

This chapter describes how to quickly create a PCI project framework based on the software utility -
PCI System builder.

5.1 Introduction
PCI System Builder is a Windows-Based utility. It can help users quickly and accurately to create a
QUARTUS project. Figure 5.1 shows the graphical user interface of the utility.

Figure 5.1 User interface of PCI System Builder

The utility consists of two major functions:

1. Quartus Top Design
2. Built-in Logic

For Quartus Top Design, the utility creates Quartus project and pin assignment according to users’
selected peripherals and daughter boards. For Built-in Logic, the utility generates verilog code
according to users’ configuration for PCI Bridge, DDR2 multi-ports, and custom registers. If PCI
Bridge is to be included, the driver and library for the PC side will also be created.

 25

5.2 Quartus Top Design
Figure 5.2 shows the user interface of Quartus Top Design. User can select desired peripherals and
daughter boards on the users interface.

Figure 5.2 User Interface Quartus Top Design

In the Project Name field, users can input a desired name. It will be used as the name of Quartus
project, top-design file, and the folder to store the Quartus project. For Board Voltage pull-down list,
users can select the IO-Standard voltage of the HSTC connectors on PCI board. The voltage must
be consistent with the daughter boards attached to the PCI board. Please select 3.3V for Terasic
daughter boards. As shown in Figure 5.3, users must select the correct board voltage carefully, or
the hardware could be damaged.

Built-in Logic

 26

Figure 5.3 Board Voltage Selections

For peripheral selections, users can directly check the desired peripherals. The associated
component will be highlighted with yellow rectangle. For daughter boards, users can select desired
daughter board from the associated pull-down list. The photo of selected daughter boards will be
displayed.

5.3 Built-in Logic
If users wish to include Built-in Logic in the Quartus project, click “Built-in Logic…” button and a
Logic Configuration dialog will pop up, as shown in Figure 5.4.
Note. All digitals in the dialog are interpreted as a hexadecimal value.

Figure 5.4 Built-in Logic Configurations

For DDR2 SDRAM, users must select SDRAM Size and Burst length. The burst length must be
larger than or equal to 0x10. For FIFO port, the built-in logic can offer up to 4 FIFO-write ports and
4 FIFO-read ports. For each FIFO port, users need to specify its bus width (unit in bit), start address
(byte address), and FIFO length (unit in byte).

 There are some constraints for the value of start address and FIFO length:

 The value of start address must be multiple of 32.
 The FIFO length must be multiple of 32 and larger than or equal to 32 x (burst length)

For ENHANCED Port, the built-in logic can offer 2 enhanced-write ports and 2 enhanced-read
ports at maximal. For each enhanced port, users need to specify its bus width, unit in byte. The

 27

enhanced port size is as assumed as same as DDR2 SDRAM size.

If users wish to access the DDR2 from PC, they can tick the associated DDR2 ports in “Connect
DDR2 SDRAM” group. For enhanced ports, only one enhanced-write port and one enhanced-read
port can be connected to PCI Bridge at the same time. Moreover, if a DDR2 port is connected, its
bus width will be fixed to be 64-bits.

If users wish to perform remote control from PC, custom registers can be added. The attribute of
each register is neither read-only nor write-only. The size of each register is fixed to 32-bits. To add
a register, users need to specify register name and attribute first and click “Add”; To delete an
existed register, users need to select the existed register and click “Del”; To modify the name or
attribute of an existed register, users need to select the register first, then modify the name or
attribute, finally click “Replace”. Users can also change the register sequence by clicking “Move
Up” and “Move Down”.

5.4 Save Configuration
Once users finish the configuration for top-level design and built-in logic, they can save the
configuration into a file by selecting “File Save Project As…”, as shown in Figure 5.5. Users can
reload the configuration afterwards by selecting “File Open Project…”.

Figure 5.5 Configuration Save and Load

5.5 Generated Code
After user finish Quartus top design and built-in logic configuration, just click “Generate” to
generate desired codes. Some of the generated file are naming based on the project name. Assume
the project name is called as “MY_PCI”, the generated files will include:

 QUARTUS Project, contains:
 QUARTUS Project (MY_PCI.QPF)
 QUARTUS Top-Design File (MY_PCI.V)
 QUARTUS Pin Assignment File (MY_PCI.QSF)
 QUARTUS timing constrain file (MY_PCI.SDC)

Generated Code

 28

 HTML Design Document (MY_PCI.HTM)
 PCI System-Builder Configuration File (MY_PCI.PSC)

 User Logics, contains:

 PCI Bridge Logic: Top design file is PCI_Interface.v
 DDR2 Multi-Port Logic: Top design files is Multi_Port_Controller.v
 Custom Register logic: Top design files is User_Logic.v

 Windows Driver, contains:

 PCI Library and Header files:
 TERASIC_API.dll
 TERASIC_FPGA.dll
 Wdapi921.dll
 FPGA_BOARD.cpp
 FPGA_BOARD.h
 TERASIC_API.h

 System header file: pci_system.h
 Control Panel Software Utility: PCI_ControlPanel.exe
 PCI Control Interface File (MY_PCI.PCI)

The generated Quartus Project and User Logic are located at the sub-directory under the folder
where the PCI system builder is executed. The sub-directory name is as same as the name specified
in the Project Name. The Windows Driver is located at the folder “PC_CODE” under the
sub-directory.

In the Quartus Project, users can add their logic in the verilog file User_Logic.v. All of desired
peripherals, daughter boards, and control pins are included in this module. The PCI System-Bulider
Configuration File (.PSC) contains the project configuration in PCI system builder. Users can select
the menu “file open project…” in PCI system builder to open this file.

For Windows Driver, the kernel PCI driver is not includes in the “PC_CODE” folder. The kernel
PCI driver should be installed before calling the PCI library API. For detail installation, per refer to
the section Installation of PCI kernel driver in the next chapter.

The PCI Library includes TERASIC_API.DLL , TERASIC_FPGA.DLL, and WDAPI921.DLL.
Uses can call the exported API in the TERASIC_API.DLL to communicate with the PCI board. The
System Header File pci_system.h defined the address of custom registers defined in built-in logic.
Users’ application software can use these constants to specified desired custom register.
PCI_ControlPanle.exe is a software utility for users to remove control the PCI board. Before access
the PCI board, this utility inquires users to input the PCI Control Interface File (.PCI) that contain

 29

the control interface specified in the built-in logic configuration dialog.

PCI Software Stack

 30

1
Chapter 6

Host Software Library and Utility

The PCI Kits provide necessary PCI driver/library and PCI utility on host site, so users can easily
control the PCI board. Users must to install PCI kernel driver before PCI library and utility can
work well.

Note. The PCI driver only supports 32-bits MS Windows.

6.1 PCI Software Stack
Figure 6.1 shows the PCI software stack. To communicate with the PCI board, Users Application
should dynamically load the TERASIC_API.dll and call the exported API. Also, users need to
include TERASIC_API.h into their C/C++ project.

If users’ project is C++ project, they can refer to FPGA_BOARD.cpp and FPGA_BOARD.h
which implement the DYNAMIC DLL LOADING procedure. The implemented class name is
TFPGA_BOARD. FPGA_BOARD.h includes TERASIC_API.h, and pci_system.h.

The low-level PCI driver is called WinDriver which is developed by Jungle Company. It includes
wdapi921.dll and windrvr6.sys. In this kit, the PCI driver only supports 32-bits Windows. Also,
users are not allowed to call wdapi921.dll directly due to license limitation. For 64-bits Windows
and other OS platform, users need to develop the driver by their self or purchase development kits
from Jungle Company.

 31

Figure 6.1 PCI Software Stack

6.2 Data Structure in TERASIC_API.h
The data structure is shown below. APP_DDR2_PORT_ID enumerate the ID for DDR2 FIFO port.
The calling conversion is defined as “FAR PASCAL”. The handle of FPGA board is defined as a
pointer. The address of register is defined as 32-bits unsigned integer, the value of register is defined
as 32-bits unsigned integer, and id of DDR2 FIFO PORT is defined as 32-bits unsigned integer. The
interrupt service routine prototype is also defined.

#define TERASIC_API FAR PASCAL
typedef void *FPGA_BOARD;
typedef DWORD FPGA_REG_ADDRESS;
typedef DWORD FPGA_DDR2_PORT_ID;
typedef DWORD FPGA_REG_TYPE;
typedef void (TERASIC_API *FPGA_ISR)(void);

6.3 API List of TERASIC_API.DLL
Below table shows the exported API of TERASIC_API.DLL

API Name API Description
System Function
SYS_BoardNum Return the number of FPGB available on your system.
SYS_GetDLLVersion Retrieve the version of the software kits

API Description of
TERASIC_DLL

 32

FPGA Control Function
FPGA_Connect Connect to a specified FPAG board.
FPGA_Disconnect Disconnect the connected FPAG board.
Information
FPGA_IsReady Check whether the FPGA is configured.
FPGA_GetFPGAVersion Retrieve the version of build-in logic
FPGA_GetTickCount Read the tick count, unit in ms, from FPGA counter logic.
FPGA Custom Register Access Function
FPGA_RegWrite Write data to a specified register.
FPGA_RegRead Read data from a specified register.
FPGA DDR2 FIFO Port Access Function
FPGA_FifotDmaWrite Write a block of data to a memory port in DMA mode
FPGA_FifoDmaRead Read a block of data from a memory port in DMA mode
FPGA_PortReset Reset DDR2 port
FPGA_PortFlush Flush DDR2 read port
Interrupt Function
FPGA_RegisterISR Register interrupt callback function
Bridge
FPGA_GetBridgeVersion Retrieve the version of the pci bridge hardware
FPGA_BridgeReset Reset bridge circuit.

6.4 API Description of TERASIC_DLL
This section will explain the PCI library API in details.

Function Prototype Function Description
BOOL
TERASIC_API
SYS_BoardNum(
WORD wVendorID,
WORD wDeviceID,
WORD *pwBoardNum
);

Function:
Query the number of PCI boards installed on the
host.

Parameters:
wVendorID:
Specifies the vendor ID of the target PCI board.

wDeviceID:
Specifies the device ID of the target PCI board.

pwBoardNum:
Points to the buffer to retrieve the number of PCO
boards installed on the host.

Return Value:

 33

If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API
SYS_GetDLLVersion(
DWORD *pdwVersion
);

Function:
Query the software version of TERAISC_API.DLL.

Parameters:
pdwVersion:
Points to the buffer to retrieve the version
information.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API
FPGA_Connect(
FPGA_BOARD *phFPGA,
WORD wVendorID,
WORD wDeviceID,
WORD wBoardIndex
);

Function:
Connect to a specified PCI board.

Parameters:
phFPGA:
Points to the buffer to retrieve the driver handle of
the target PCI board.

wVendorID:
Specifies the vendor ID of the target PCI board.

wDeviceID:
Specifies the device ID of the target PCI board.

wBoardIndex:
Specifies the board index of the target PCI board.
The index of first board is zero.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API
FPGA_Disconnect(
FPGA_BOARD hFPGA
);

Function:
Disconnect the specified PCI board.

Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

Return Value:
If the function succeeds, the return value is true.

API Description of
TERASIC_DLL

 34

Otherwise, the return value is false.

BOOL
TERASIC_API
FPGA_IsReady (
FPGA_BOARD hFPGA,
);

Function:
Check whether the FPGA is configured. The FPGA
circuit framework is assumed to be generated by
the PCI system builder.

Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

Return Value:
If the FPGA is configued, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API
FPGA_GetFPGAVersion(
FPGA_BOARD hFPGA,
DWORD *pdwVersion
);

Function:
Query the version of the PCI Framework RTL code
embedded in Clylone III 3C125. The framework is
automatically generated by the PCI system builder
utility.

Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

pdwVersion:
Points to the buffer to retrieve the version
information.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API
FPGA_GetTickCount(
FPGA_BOARD hFPGA,
DWORD *pdwTickCount
);

Function:
Query the tick-count, unit in ms, of the PCI
Framework RTL code embedded in Clylone III
3C125 The tick-count logic is automatically
generated by PCI system builder utility. When
FPGA is reconfigured, the counter is reset to zero.

Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

 35

pdwTickCount:
Points to the buffer to retrieve the tick-count value.
The unit of the tick-count value is 1/1000 second.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API
FPGA_RegRead (
FPGA_BOARD hFPGA,
FPGA_REG_ADDRESS
RegAddr,
FPGA_REG_TYPE
*pRegValue
);

Function:
Read data from a specified register.

Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

RegAddr:
Specifies the address of the target register. The
address is defined in pci_system.h.

pRegValue:
Points to the buffer to retrieve the data value of the
specified register.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API
FPGA_RegWrite (
FPGA_BOARD hFPGA,
FPGA_REG_ADDRESS
RegAddr,
FPGA_REG_TYPE
RegValue
);

Function:
Write data to a specified register.

Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

RegAddr:
Specifies the address of the target register. The
address is defined in pci_system.h.

RegValue:
Specifies the data value written to the specified
register.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

API Description of
TERASIC_DLL

 36

BOOL
TERASIC_API
FPGA_FifoDmaRead(
FPGA_BOARD hFPGA,
FPGA_DDR2_PORT_ID
DDR2PortID,
void *pBuffer,
DWORD dwBufSize
);

Function:
Read data from a specified DDR2 FIFO Port.

Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

DDR2PortID:
Specifies the DDR2 FIFO Port for reading. The
PORT ID is defined in pci_system.h.

pBuffer:
Points to the buffer to retrieve the data reading
from the specified DDR2 FIFO PORT.

DDR2PortID:
Specifies the size, in bytes, of the buffer specified
by the pBuffer parameter.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API
FPGA_FifoDmaWrite(
FPGA_BOARD hFPGA,
FPGA_DDR2_PORT_ID
DDR2PortID,
void *pData,
DWORD dwDataSize
);

Function:
Write data to a specified DDR2 FIFO Port.

Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

DDR2PortID:
Specifies the DDR2 FIFO Port for writting. The
PORT ID is defined in pci_system.h.

pData:
Points to the buffer containing tha data to be
written to the specified DDR2 FIFO PORT.

dwDataSize:
Specifies the number of bytes to write to the
specified DDR2 FIFO PORT.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API

Function:
Reset a specified DDR2 FIFO Port. When a fifo

 37

FPGA_PortReset(
FPGA_BOARD hFPGA,
FPGA_DDR2_PORT_ID
DDR2PortID
);

port is reset, the fifo pointer is reset to the
beginning of the fifo port.

Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

DDR2PortID:
Specifies the DDR2 FIFO Port for reseting. The
PORT ID is defined in pci_system.h.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API
FPGA_PortFlush(
FPGA_BOARD hFPGA,
FPGA_DDR2_PORT_ID
DDR2PortID
);

Function:
Flush a specified DDR2 FIFO Port. When a fifo
port is flushed, the data in fifo are written to DDR2
immediately.

Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

DDR2PortID:
Specifies the DDR2 FIFO Port for reseting. The
PORT ID is defined in pci_system.h.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API
FPGA_RegisterISR(
FPGA_BOARD hFPGA,
FPGA_ISR ISR_Function
);

Function:
Register/Unregister an interrupt service routine for
the PCI interrupt event.

Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

ISR_Funciton:
Specifies the location of interrupt service routine. If
the value is NULL, the unregister interrupt service
routine.

PCI Control Panel Utility

 38

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API
FPGA_GetBridgeVersion(
FPGA_BOARD hFPGA,
DWORD *pdwVersion
);

Function:
Query the version of PCI Bridge RTL code
embedded in Clylone III 3C25.

Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

pdwVersion:
Points to the buffer to retrieve the version
information.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API
FPGA_BridgeReset (
FPGA_BOARD hFPGA
);

Function:
Reset bridge circuit located at Cyclone III 3C25.

Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

6.5 PCI Control Panel Utility
Except for calling PCI Library, users also can use the PCI Control Panel Utility to communicate
with the PCI board. The execution file name of this utility is named as, PCI_ControlPanel.exe. It is
automatically generated by PCI System builder. It is located in the “PCI_CODE” folder. Figure 6.2
shows the user interface of the PCI control panel utility.

 39

Figure 6.2 User Interface of PCI Control Panel

Before launch this utility, users need to install the PCI board and driver first, then download .SOF to
the PCI Board. After launch this utility, a “Connected, monitoring interrupt” message will appears if
it connects the PCI board successfully. In additional, the version information also is displayed in the
version information group. Then, users need to select “PCI Control Interface File” first. This file is
automatically generated by the PCI System Builder. It is located at the “PC_CODE” folder and its
extension name is “.PCI”. Users can click “Select PCI Control Interface File” button to select
the .PCI file.

If users implement interrupt in user logic, users can use this utility to verify. When hardware
interrupt happen, a message dialog will popup to inform users that interrupt occurs.

If users implement register access in user logic, users also can use this utility to verify. First, users
need to select the desired register in the pull down menu Register Name/Attribute. Then, click
“Read” and “Write” button to access the register.

If users enable the DDR2 FIFO, users can use this utility to verify, too. First, users need to select the

PCI Control Panel Utility

 40

desired DDR2 FIFO PORT in the pull down menu DDR2 Port Type. Then, click “Read” and
“Write” button to access the data of DDR2 FIFO. In “Read” function, the data from fifo port will be
written to a specified file. In “Write” function, the file content will be written to fifo port with a
given length, unit in bytes. In additional, click “Port Reset” and “Port Flush” to reset and flush the
DDR2 FIFO, individually.

The PCI System Builder automatically generated a tick-count circuit. To test this function, users can
click “Read” in the Tick Count Group.

 41

Chapter 7
Reference Design

This chapter illustrates some example showing how to develop Quartus project based on PCI
system builder. All of these reference designs are developed by Quartus 8.1.

7.1 Remote Control LED
 Function Description

This design shows how to implement remote control the LED in the PCI board. In host site,
application call register access API to control the LED on the PCI board.

 Build Project by PCI System Builder
Below shows the procedure to create the project framework by using PCI System builder utility.

1. Launch PCI_SystemBuilder.exe and specify project name and enable LED.

2. Click “Built-in Logic…” and Logic Configuration Dialog will pop up. Add “REG_LED”

register with WRITE attribute and click “OK”

Remote Control LED

 42

3. Click “Generate” to generate codes.

 Add User Logic in Quartus Project

Below show the procedures to add user logic in the generated Quartus Project.
1. The generate codes are shown as below. Open the generated Quartus project by double

clicking “PCI_LED.qpf”.

2. Open User_Logic.v and add “assign LED = iREG_LED;” statement.

3. Compile the project and download the generated file PCI_LED.sof to the PCI board.

 43

 Remote Control by PCI_ControlPanel.exe

Below show the procedures to remote control the LED by PCI_ControlPanel.exe.
1. Launch PCI_ControlPanel.exe under the PC_CODE folder

2. Click “Select Configure File” to select PCI_LED.pci

3. Type “0000000F” in the write edit box of the Register group. Click “Write” and the LED
will be turned off immediately.

Remote Control LED

 44

 Remote Control by Your C++ Program

Below show the procedures to remote control the LED by creating a C++ program.
1. Create a C++ project.
2. Copy FPGA_BOARD.cpp, FPGA_BOARD.h, TERASIC_API.h, and pci_system.h under

the PC_CODE folder to the source code folder of your C++ project.
3. Copy TERASIC_API.DLL and wdapi921.dll under the PC_CODE folder to the execution

file folder of your C++ project.
4. Include FPGA_BOARD.cpp into your C++ project.
5. Modify your main procedure as:

#include "FPGA_BOARD.h"

int main(int argc, char* argv[])
{
 TFPGA_BOARD Board;
 FPGA_REG_TYPE RegValue = 0x00;
 BOOL bSuccess = TRUE;

 printf("===== LED Demo =====\n");

 // check whether the PCI driver is available
 if (!Board.IsDriverAvailable()){
 printf("Failed to load the PCI driver.\n");
 getchar();
 return 0;
 }

 45

 // connect the PCI board
 if (!Board.Connect()){
 printf("Failed to connect the PCI board.\n");
 getchar();
 return 0;
 }

 // make sure FPGA is configured
 if (!Board.IsReady()){
 printf("FPGA is not configured. Please make sure .sof is downloaded.\n");
 getchar();
 return 0;
 }

 // start to control the LED
 printf("LED blinking...\n");
 while(bSuccess){
 bSuccess = Board.RegWrite(REGW_REG_LED, RegValue);
 if (!bSuccess){
 printf("Failed to set register.\n");
 }else{
 RegValue ^= 0x0F;
 Sleep(500);
 }
 }

 //
 printf("Program is terminated.\n");
 Board.Disconnect();
 getchar();
 return 0;
}

6. Compile and execute the code. (Note. If an error “fatal error C1010: unexpected end of

file while looking for precompiled header directive” occurs while compiling, please
disable the Precompiled Headers function in the VC++ project.)

7. Now, you are expected to see the LED on the PCI board is blinking.

Note. For first time to use the PCI board on your compiler, you should install the PCI kernel
driver first.

 Source Code:
The Quartus Project:

 Source code : PCI DC-ROM\reference_design\PCI_LED
 Development Tool: Quartus 8.1

The C++ Project:

 Source code : PCI DC-ROM\reference_design\PCI_LED\PC_CODE\vb_led
 Development Tools: Visual C++ 6.0

Button IRQ

 46

7.2 Button IRQ
 Function Description

This design shows show how to implement an interrupt function. In the design, the interrupt is
triggered by the BUTTON on the PCI board. In host site, the application should register an interrupt
service routine first. When interrupt happen (users press button on the PCI board), the service
routine is called. Then, the application reads the button status and shows the status on host’s console
window.

The following figure is the block diagram of Button IRQ reference design. Before detecting the
button press, the input signals need to be processed by de-bounce circuit. Once the button is pressed,
the interrupt request signal will active one clock cycle to trigger PCI interrupt, and the button status
register will record it(which button had been pressed).

 Build Project by PCI System Builder
Below shows the procedure to create the project framework by using PCI System builder utility.

1. Launch PCI_SystemBuilder.exe and specify project name and enable BUTTON.

 47

2. Click “Built-in Logic…” and Logic Configuration Dialog will pop up. Add “REG_LED”

register with WRITE attribute and click “OK”

3. Click “Generate” to generate codes.

Button IRQ

 48

 Add User Logic in Quartus Project

1. Open the generated Quartus project by double clicking “PCI_BUTTON_IRQ.qpf”.
2. Copy User_Logic.v to your current project folder from PCI_BUTTON_IRQ folder of

example project in the CD-ROM.
3. Compile the project and download the generated file PCI_BUTTON_IRQ.sof

 Implement Users’ C++ Program

Below show the procedures to implement C++ program for interrupt handling
1. Create a C++ project.
2. Copy FPGA_BOARD.cpp, FPGA_BOARD.h and TERASIC_API.h, and pci_system.h

under the PC_CODE folder to the source code folder of your C++ project.
3. Copy TERASIC_API.DLL and wdapi921.dll under the PC_CODE folder to the execution

file folder of your C++ project.
4. Include FPGA_BOARD.cpp into your C++ project.
5. Modify your main procedure as:

#include “FPGA_BOARD.h”

static BOOL bCheckButton = FALSE;
void TERASIC_API BUTTON_ISR(void){
 bCheckButton = TRUE;
}

int main(int argc, char* argv[])
{
 TFPGA_BOARD Board;
 FPGA_REG_TYPE RegValue;
 BOOL bSuccess = TRUE;

 printf("===== Button IRQ Demo =====\n");

 // check whether the PCI driver is available
 if (!Board.IsDriverAvailable()){
 printf("Failed to load the PCI driver.\n");
 getchar();
 return 0;
 }

 // connect the PCI board
 if (!Board.Connect()){
 printf("Failed to connect the PCI board.\n");
 getchar();
 return 0;
 }

 // make sure FPGA is configured
 if (!Board.IsReady()){
 printf("FPGA is not configured. Please make sure .sof is downloaded.\n");
 getchar();
 return 0;
 }

 49

 // register interrupt service routine
 if (!Board.RegisterISR(BUTTON_ISR)){
 printf("Failed to register interrupt service routine.\n");
 getchar();
 return 0;
 }

 // start to control the LED
 printf("Button monitoring...\n");

 while(bSuccess){
 if (bCheckButton){
 bCheckButton = FALSE;
 bSuccess = Board.RegRead(REGR_BUTTON_STATUS, &RegValue);
 if (!bSuccess){
 printf("failed to read button's status.\n");
 }else{
 // change to high active
 RegValue ^= 0x03;
 //
 if ((RegValue & 0x03) == 0x03)
 printf("BUTTON 0 and 1 are pressed.\n");
 else if (RegValue & 0x01)
 printf("BUTTON 0 is pressed.\n");
 else if (RegValue & 0x02)
 printf("BUTTON 1 is pressed.\n");
 } // if
 } // if
 } // while

 //
 printf("Pogram is terminated.\n");
 getchar();

 return 0;
}

6. Compile and execute the code. (Note. If an error “fatal error C1010: unexpected end of
file while looking for precompiled header directive” occurs while compiling, please
disable the Precompiled Headers function in the VC++ project.)

7. Now, click the button on PCI board. The relative information will be displayed in the
console window.

Note. For first time to use the PCI board on your compiler, you should install the PCI kernel
driver first.

DDR2 Access

 50

 Source Code:

The Quartus Project:
 Source code : \reference_design\PCI_BUTTON_IRQ
 Development Tool: Quartus 8.1

The C++ Project:

 Source code : \reference_design\PCI_BUTTON_IRQ\PC_CODE\vb_button_irq
 Development Tools: Visual C++ 6.0

7.3 DDR2 Access
 Function Description

This section illustrates an example of how to access DDR2 from PC site and FPGA local site. This
reference design provides a sample interface that connects PCI Bus to internal RAM through
Multi-Port Memory Controller (MPMC). The following figure is the high level block diagram of
the reference design. The Read DATA Interface and Write DATA Interface receive the command
individually from host PC and execute them; The Read DATA Interface controls read port of
MPMC and write the data to on-chip memory. Write DATA Interface reads the data from on-chip
memory and writes the data into write port of MPMC.

 Write port 1 and read port 2 are the same starting address and depth.
 Write port 2 and read port 1 are the same starting address and depth.

User_Logic.v

 51

 Build Project by PCI System Builder
The procedures are listed below:

8. Launch PCI_SystemBuilder.exe, then specify project name and select “Connect to DDR2
SO-DIMM (Use Altera IP).

9. Click “Built-in Logic…” and Logic Configuration Dialog will pop up. Add “CMD_REG”

register with WRITE attribute and “STATUS_REG” register with READ attributes.
Enable FIFO port Write Port 1, Read Port 1, Write Port 2, and Read Port 2. Specify the
Start and Length of each fifo port as below. Finally, click “OK”

DDR2 Access

 52

10. Click “Generate” to generate codes.

 Implement Users’ C++ Program
Below show the procedures to implement C++ program for interrupt handling

1. Create a C++ project.
2. Copy FPGA_BOARD.cpp, FPGA_BOARD.h and TERASIC_API.h, and pci_system.h

under the PC_CODE folder to the source code folder of your C++ project.
3. Copy TERASIC_API.DLL, TERASIC_FPGA.DLL, and wdapi921.dll under the

PC_CODE folder to the execution file folder of your C++ project.
4. Include FPGA_BOARD.cpp into your C++ project.
5. Modify your main procedure as:

#include “FPGA_BOARD.h”

int main(int argc, char* argv[])
{
 const int nTestSize = 32*1024; // 32K-bytes
 int i;
 BYTE *pWrite, *pRead;
 DWORD dwValue;
 TFPGA_BOARD Board;

 printf("===== DDR2 FIFO Write/Read Test =====\n");

 53

 if (!Board.IsDriverAvailable()){
 printf("Failed to load the PCI driver.\n");
 getchar();
 return 0;
 }

 if (!Board.Connect()){
 printf("Failed to connect the PCI board.\n");
 getchar();
 return 0;
 }

 // reset fifo port
 Board.PortReset(APP_DDR2_FIFO_WP1);
 Board.PortReset(APP_DDR2_FIFO_RP1);

 pWrite = (BYTE *)::GlobalAlloc(GPTR, nTestSize);
 pRead = (BYTE *)::GlobalAlloc(GPTR, nTestSize);
 for(i=0;i<nTestSize;i++){
 *(pWrite+i) = i;
 }

 // write data to fifo port
 printf("PC --> DDR2 FIFO WP1\n");
 Board.FifoDmaWrite(APP_DDR2_FIFO_WP1, pWrite, nTestSize);
 Board.PortFlush(APP_DDR2_FIFO_WP1);

 // copy fifo data to local memroy
 printf("DDR2 FIFO RP2 --> Local Memory\n");
 Board.RegWrite(REGW_CMD_REG, 0x01); // send trigger message
 Board.RegWrite(REGW_CMD_REG, 0x00);
 dwValue = 0;
 while((dwValue & 0x01) == 0){ // wait task done
 Board.RegRead(REGR_STATUS_REG, &dwValue);
 }

 // copy fifo data to local memroy
 printf("DDR2 FIFO WP2 <-- Local Memory\n");
 Board.RegWrite(REGW_CMD_REG, 0x02); // send trigger message
 Board.RegWrite(REGW_CMD_REG, 0x00);
 dwValue = 0;
 while((dwValue & 0x02) == 0){ // wait taks done
 Board.RegRead(REGR_STATUS_REG, &dwValue);
 }

 // read data from fifo port
 printf("PC <-- DDR2 FIFO RP1\n");
 Board.PortReset(APP_DDR2_FIFO_RP1);
 Board.FifoDmaRead(APP_DDR2_FIFO_RP1, pRead, nTestSize);

 // compare
 bool bSame = true;
 for(i=0;i<nTestSize && bSame;i++){
 if (*(pWrite+i) != *(pRead+i)){
 bSame = false;
 printf("Test NG, pWrite[%d]=%d, pRead[%d] = %d\n",

i, *(pWrite+i), i, *(pRead+i));
 }

DDR2 Access

 54

 }
 if (bSame)
 printf("Test PASS\n");

 //
 getchar();

 //
 ::GlobalFree(pWrite);
 ::GlobalFree(pRead);

 return 0;
}

6. Compile and execute the code. (Note. If an error “fatal error C1010: unexpected end of

file while looking for precompiled header directive” occurs while compiling, please
disable the Precompiled Headers function in the VC++ project.)

7. The test result will be displayed on the console window, as shown figure below.

Note. For first time to use the PCI board on your compiler, you should install the PCI kernel
driver first.

 Source Code:
The Quartus Project:

 Source code : \reference_design\PCI_DDR2
 Development Tool: Quartus 8.1

The C++ Project:

 Source code : \reference_design\PCI_DDR2\PC_CODE\vb_ddr2
 Development Tools: Visual C++ 6.0

 55

Chapter 8

Multi-Port Memory Controller

The Terasic Multi-Port Memory Controller provides a simple and high-performance solution to
interface with external memory device. This controller supports up to 12 local ports which have two
kinds of interface, one is simple port and another is enhanced port. The starting address and port
depth can be only modified right away on enhanced port. Figure 8.1 gives the high-level block
diagram of Terasic Multi-Port Memory Controller.

Figure 8.1 High level block diagram of the Multi-Port Memory Controller

8.1 Principle of Read/Write Port
This section will introduce how read/write port accesses the memory, and cautions users need to be
aware of.

8.1.1 Write Port
When users start writing data to the write port, 64 words (default setting) of data will be written to
the physical memory at once only if the internal buffer of the write port reaches 64 words. In
another words, the write port will stop writing any data to the physical memory if the data remained
in the buffer is less than 64 words. Hence a flush command is required to write the data remained in
the internal buffer of the write port to the physical memory, unless the rest is not important. Figure
8.2 shows initial workflow of the write port.

Read Port

 56

System Power On
or Memory Controller

Reset

Memory Controller
Initial

(about 6.5ms)

Ready to be
Write

The signal
Write Port Ready

is asserted

Figure 8.2 Initial workflow of the write port

8.1.2 Read Port
When the memory controller is ready to operate, the read port will start accessing 64 words (default
setting) of data immediately from the physical memory to the internal buffer of its own. The signal
port ready will be driven by the read port, which indicates users can start reading the data. However,
such process will be triggered whenever the memory controller is initialized and the read port is not
in the reset state. Hence undesired data will be captured to the internal buffer of the read port at the
time.

To prevent the situation from happening, users must reset the read port to make sure data retrieved
is valid. When the read port is reset, the current address will also be reset to pre-defined starting
address of the read port, instead of the beginning address of current internal buffer. The initial
workflow of the read port is shown in figure 8.3. If the read port is not in reset state, it will read the
data into the buffer immediately from physical memory after memory controller completes initial
stage. This may cause that undesired data will be get to the internal buffer of the port, because the
data of physical memory have not been written.

There are two methods that we recommend to solve this problem:
1. Keep the read port reset signal low until start reading data.
2. To trigger the reset of read port before the first time to read data.

 57

Figure 8.3 Initial workflow of the read port

8.2 Port Interface
One physical memory device could be replaced several memory blocks by using Terasic Multi-Port
Memory Controller. Each memory block may have its own write and read port. These ports are
similar to synchronous FIFO and must define the starting address and depth to configure a memory
block that works on sequential mode. Figure 8.4 shows the memory arrangements.

Simple Write Port

 58

Figure 8.4 Memory arrangements

8.2.1 Simple Write Port
Figure 8.5 shows the writing waveform of simple write port. Each port has its own clock domain. It
synchronizes data write transactions to FIFO of the port. When the number of data in the FIFO
reaches a certain value, the write port will start writing the data from FIFO to the external memory
which location is related to the writing address pointer. Figure 8.6 shows how to force a flush of the
write port by asserting iFLUSH_REQ. During clock cycle 5, the signal oFLUSH_BSY is asserted to
inform the local side that it is flushing the data which remain in the FIFO. When oFULL or
oFLUSH_BSY is asserted or oWRITE_PORT_READY is inactive, the circuits of iWRITE are
disabled.

iCLK

1 2 3 4 5 6 7 8 9

iRST_n

iWRITE

D0 D1 D2 D3 D4iWRITE_DATA

iFLUSH_REQ

oFLUSH_BSY

oFULL

Figure 8.5 Write waveform of the simple write port

 59

iCLK

1 2 3 4

iRST_n

iWRITE

iWRITE_DATA

iFLUSH_REQ

oFLUSH_BSY

oFULL

5

At least 2 clock cycle At least 2 clock cycle

 Figure 8.6 Flush waveform of the simple write port

8.2.2 Simple Read Port
Figure 8.7 shows read transactions of simple read port. The read signal operates as a
read-acknowledge signal. Thus, the data bus outputs the first data word regardless of whether a read
operation occurs. Figure 8.8 shows the port reset. When a reset operation occurs, the starting
address of the port will be reloaded and oPORT_READY signal will be de-asserted to indicate that
it is not enough data word to be read. While oPORT_READY is asserted, data of the read port can
be read.

iCLK

1 2 3

iRST_n

oREAD_DATA

oEMPTY

oPORT_READY

iREAD

D0 D1 D2 D3

4 5 6 7 8 9

Figure 8.7 Read transfer of simple read port

Enhanced port

 60

iCLK

1 2 3

iRST_n

oREAD_DATA

oEMPTY

oPORT_READY

iREAD

Figure 8.8 Reset Operation of simple read port

8.2.3 Enhanced port
Figure 8.9 shows write transfer of enhanced write port. The differences between the enhanced and
simple port are that starting address and port depth of the enhanced port could be modified
immediately. Figure 8.10 shows how to reload the starting address and port depth of the enhanced
port. When the signal iRST_n is asserted, the data in the FIFO will be clear. Furthermore, the
starting address and port depth signals will be reloaded into the registers of this port. Figure 8.11
shows the parameters reloading waveform of enhanced read port.

iCLK

1 2 3 4 5 6 7 8 9

iRST_n

iWRITE

D0 D1 D2 D3 D4iWRITE_DATA

iFLUSH_REQ

oFLUSH_BSY

oFULL

iSTARTING_
ADDRESS

iPORT_SIZE

Figure 8.9 Write transfer of enhanced write port

 61

iCLK

1 2 3 4 5 6 7 8 9

iRST_n

iWRITE

D0iWRITE_DATA

iFLUSH_REQ

oFLUSH_BSY

oFULL

iSTARTING_
ADDRESS

iPORT_SIZE

ADDRESS

DEPTH

D1

At least 2 clock cycle
Figure 8.10 Parameter reloading of enhanced write port

iCLK

1 2 3 4 5 6 7 8 9

iRST_n

iSTARTING_
ADDRESS

iPORT_SIZE

ADDRESS

DEPTH

oREAD_DATA

oEMPTY

oPORT_READY

iREAD

Figure 8.11 Parameter reloading of enhanced read port

PCI Local Write/Read Interface

 62

Chapter 9
PCI Local Interface

This section describes how to directly communicate with PCI Bus and trigger a PCI interrupt.

9.1 PCI Local Write/Read Interface
The PCI local interface could be distributed several read and write local interface by PCI System
Builder, and . The write interface is familiar memory-like write interface which supports
wait-state insertion. The read interface has a burst count signal that is used to indicate the number of
transfers in each read, and read interface is not support wait-state. Figure 9.1 shows a 64-bit write
transfer waveform of PCI local interface. The wait-state of each write transfer do not exceed 16
clock cycles because the time of wait-state affects data transmission performance of PCI interface.
The 64-bit read transfer waveform of PCI local interface is shown on figure 9.2, and wait-state
mode is invalid on read transfer. While the iM_SEL signal of the local interface isn’t asserted high,
read or write transmission of the local interface has to ignore.

Figure 9.1 64-bit Write transfer waveform of PCI local interface

 63

Figure 9.2 64-bit Read transfer waveform of PCI local interface

9.2 PCI Interrupt
For PCI interrupt, we provide a simple interface that allows user logic of local side to trigger the
event. Figure 9.3 shows how to control the interrupt of PCI local interface. When the
oCTRL_INT_REQ is active one clock cycle, the PCI interrupt will be triggered. Once PCI interrupt
occurs, the software on PC side will clear the interrupt flag of PCI Bridge (it will assert
iCTRL_INT_ACK one clock cycle to acknowledge) and execute the interrupt function.

Figure 9.3 Interrupt trigger of PCI local interface

PCI Interrupt

 64

Table 9-1 PCI Local Interface’s User Signals (PCI_Interface:Local_Interface)

Name Type Polarity Description
CLK Input - Clock. The reference clock of PCI local interface.
ADDRESS[31..0] Input - Address bus. The ADDRESS[31..0] is a byte-unit

address bus.
WRITE_DATA[63..0] Input - Write data bus. The width of WRITE_DATA bus is

depending on PCI Bus data width (oMODE_64_32).
DATA_BE[7..0] Input - Data bytes enable. If the bit on DATA_BE bus is

asserted high, the byte data of WRITE_DATA is
enabled.

WRITE_REQ Input High Write request. The WRITE_REQ signal is an output
from PCI bridge that indicates the beginning and
duration of a write operation.

WRITE_ACK Output High Write acknowledge. The WRITE_ACK is a user logic
output, indicates the user logic of local side is
accepting data.

READ_REQ Input High Write request. The READ_REQ signal is an output
from PCI bridge that indicates the beginning and
duration of a read operation.

READ_VALID Input High Read data valid.
READ_DATA[63..0] Output - Read data bus. The width of READ_DATA bus is

depending on PCI Bus data width (oMODE_64_32).
BURST_CNT[31..0] Input - Burst count. Only during read transfer, the

BURST_CNT bus is valid. It indicates the number of
data will be transferred.

MODE_64_32 Input - Data width mode. The MODE_64_32 signal indicates
the width of data bus on PCI local interface.

M_SEL Input High Interface Select. When the M_SEL signal is asserted,
the PCI bus transmission was decoded to transfer with
this user local interface this time.

MEM_REG_SEL Input - Memory/Register mapping. When the signal
MEM_REG_SEL is asserted high, the mapping of the
transfer is memory. When it is assert low, the
mapping of the transfer is register.

ACCESS_MODE Input - Port/Memory access mode. When the signal
ACCESS_MODE is asserted high, the mode of the
transfer is port access. When it is assert low, the mode
of the transfer is memory access.

 65

Table 9-2 PCI Local Interrupt Signals (on User_Logic)

Name Type Polarity Description
iCLK Input - Clock. The reference clock output of PCI local

interface.
oCTRL_INT_REQ Output High PCI interrupt request. When the signal

oCTRL_INT_REQ is active one clock cycle by user
of PCI local side, the PCI interrupt will be trigger.

iCTRL_INT_ACK Input High PCI interrupt acknowledge. The iCTRL_INT_ACK is
an output from PCI bridge that indicates the interrupt
acknowledge of host PC.

PCI Interrupt

 66

Appendix A
Programming the Serial Configuration

Device
Appendix C Programming the Serial Configuration device
This appendix describes how to program the serial configuration device with Serial Flash Loader
(SFL) function via the JTAG interface. User can program serial configuration devices with a JTAG
indirect configuration (.jic) file. To generate JIC programming files with the Quartus II software,
users need to generate a user-specified SRAM object file (.sof), which is the input file first. Next,
users need to convert the SOF to a JIC file. To convert a SOF to a JIC file in Quartus II software,
follow these steps:

 Convert SOF to JIC

1. Choose “Convert Programming Files…” under Quartus’s File menu.

2. In the Programming file type pull-down menu, select the item “JTAG Indirect

Configuration File (.jic)”.

3. In the pull-down menu “Configuration device”, select the targeted serial configuration device

(Select EPCS64).

4. In the File name edit box, browse to the target directory and specify an output file name.

5. Select the “SOF Data” in the Input files to convert section, as showing in Figure 0.1.

6. Click “Add File…” button. In the “Select Input File” dialog, select the SOF that you want to

convert to a JIC file, and then click “Open”.

7. Select the “Add Device” in the Input files to convert section, as showing in Figure 0.2.

8. Click OK. The Select Devices page displays.

 67

Figure 0.1. Convert Programming Files Dialog Box

Figure 0.2. Highlight Flash Loader

9. Select the targeted FPGA that you are using to program the serial configuration device. See
Figure 0.3.

PCI Interrupt

 68

10. Click OK. The Convert Programming Files page displays. See Figure 0.4.

11. Click Generate.

Figure 0.3. Select Devices Page

Figure 0.4. Convert Programming Files Page

 69

 Write JIC File into Serial Configuration Device

To program the serial configuration device with the JIC file that you just created, add the file to the
Quartus II Programmer window and follow the steps:

1. When the SOF-to-JIC file conversion is complete, add the JIC file to the Quartus II

Programmer window:
i. Choose Programmer (Tools menu). The Chain1.cdf window displays.
ii. Click Add File. From the Select Programming File page, browse to the JIC file.
iii. Click Open.

2. Program the serial configuration device by checking the corresponding Program/Configure

box, a Factory default SFL image will be load (See Figure 0.5).

Figure 0.5. Quartus II programmer window with one JIC file

3. Click Start to program serial configuration device.

 Erase the Serial Configuration Device

To erase the existed file in the serial configuration device, follow the steps listed below:

1. Choose Programmer (Tools menu). The Chain1.cdf window displays.

2. Click Add File. From the Select Programming File page, browse to a JIC file.

3. Click Open.

4. Erase the serial configuration device by checking the corresponding Erase box, a Factory

default SFL image will be load (See Figure 0.6).

PCI Interrupt

 70

Figure 0.6 Erasing setting in Quartus II programmer window

5. Click Start to erase the serial configuration device.

	Chapter 1 PCI Package
	1.1 Package contents
	1.2 Getting Help
	1.3 Revision History
	2.1 General Description
	2.2 Layout and Components
	2.3 Block Diagram of the PCI Board
	2.4 Power-up the PCI Board
	3.1 Clocking Circuitry
	3.1.1 Clock & Programmable PLL

	3.2 Switch
	3.3 HSTC Expansion Connectors
	3.4 Off-Chip Memory
	3.4.1 DDR2 SO-DIMM Module

	 Chapter 4 Setup PCI Board
	4.1 System Requirement
	4.2 Hardware Installation: PCI Board
	4.3 Software Installation: PCI Kernel Driver
	4.4 Install License File
	4.5 Diagnoses

	 Chapter 5 PCI System Builder
	5.1 Introduction
	5.2 Quartus Top Design
	5.3 Built-in Logic
	5.4 Save Configuration
	5.5 Generated Code

	1
	Chapter 6 Host Software Library and Utility
	6.1 PCI Software Stack
	6.2 Data Structure in TERASIC_API.h
	6.3 API List of TERASIC_API.DLL
	6.4 API Description of TERASIC_DLL
	6.5 PCI Control Panel Utility

	 Chapter 7 Reference Design
	7.1 Remote Control LED
	7.2 Button IRQ
	7.3 DDR2 Access
	8.1 Principle of Read/Write Port
	8.1.1 Write Port
	8.1.2 Read Port
	8.2 Port Interface
	8.2.1 Simple Write Port
	8.2.2 Simple Read Port
	8.2.3 Enhanced port
	9.1 PCI Local Write/Read Interface
	9.2 PCI Interrupt

	Appendix C Programming the Serial Configuration device

